
Logical Methods in Computer Science
Vol. 9(3:17)2013, pp. 1–34
www.lmcs-online.org

Submitted Jul. 22, 2012
Published Sep. 17, 2013

ON CHARACTERISING DISTRIBUTABILITY ∗

ROB VAN GLABBEEK a, URSULA GOLTZ b, AND JENS-WOLFHARD SCHICKE-UFFMANN c

a NICTA, Sydney, Australia
School of Computer Science and Engineering, Univ. of New South Wales, Sydney, Australia
e-mail address: rvg@cs.stanford.edu

b,c Institute for Programming and Reactive Systems, TU Braunschweig, Germany
e-mail address: goltz@ips.cs.tu-bs.de, drahflow@gmx.de

Abstract. We formalise a general concept of distributed systems as sequential compo-
nents interacting asynchronously. We define a corresponding class of Petri nets, called
LSGA nets, and precisely characterise those system specifications which can be imple-
mented as LSGA nets up to branching ST-bisimilarity with explicit divergence.

1. Introduction

The aim of this paper is to contribute to a fundamental understanding of the concept of a
distributed reactive system and the paradigms of synchronous and asynchronous interaction.
We start by giving an intuitive characterisation of the basic features of distributed systems.
In particular we assume that distributed systems consist of components that reside on
different locations, and that any signal from one component to another takes time to travel.
Hence the only interaction mechanism between components is asynchronous communication.

Our aim is to characterise which system specifications may be implemented as dis-
tributed systems. In many formalisms for system specification or design, synchronous
communication is provided as a basic notion; this happens for example in process alge-
bras. Hence a particular challenge is that it may be necessary to simulate synchronous
communication by asynchronous communication.

2012 ACM CCS: [Theory of computation]: Models of computation—Concurrency—Distributed com-
puting models.

Key words and phrases: Concurrency, Petri nets, distributed systems, reactive systems, asynchronous
interaction, semantic equivalences.
∗ This paper is adapted from [GGS12]; it characterises distributability for a slightly larger range of semantic

equivalence relations, and incorporates various remarks stemming from [GGS08]. An extended abstract
appeared in L. Birkedal, ed.: Proc. 15th Int. Conf. on Foundations of Software Science and Computation
Structures (FoSSaCS 2012), LNCS 7213, Springer, 2012, pp. 331–345, doi:10.1007/978-3-642-2872-9 22.
a NICTA is funded by the Australian Government as represented by the Department of Broadband, Com-

munications and the Digital Economy and the Australian Research Council through the ICT Centre of
Excellence program.

This work was partially supported by the DFG (German Research Foundation).

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-9(3:17)2013

c© R. van Glabbeek, U. Goltz, and J.-W. Schicke-Uffmann
CC© Creative Commons

http://dx.doi.org/10.1007/978-3-642-28729-9_22
http://creativecommons.org/about/licenses

2 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

Trivially, any system specification may be implemented distributedly by locating the
whole system on one single component. Hence we need to pose some additional require-
ments. One option would be to specify locations for system activities and then to ask for
implementations satisfying this distribution and still preserving the behaviour of the orig-
inal specification. This is done in [BCD02]. Here we pursue a different approach. We add
another requirement to our notion of a distributed system, namely that its components only
allow sequential behaviour. We then ask whether an arbitrary system specification may be
implemented as a distributed system consisting of sequential components in an optimal way,
that is without restricting the concurrency of the original specification. This is a particular
challenge when synchronous communication interacts with concurrency in the specification
of the original system. We will give a precise characterisation of the class of distributable
systems, which answers in particular under which conditions synchronous communication
may be implemented in a distributed setting.

For our investigations we need a model which is expressive enough to represent con-
currency. It is also useful to have an explicit representation of the distributed state space
of a distributed system, showing in particular the local control states of components. We
choose Petri nets, which offer these possibilities and additionally allow finite representa-
tions of infinite behaviours. We focus on the class of structural conflict nets [GGS11]—a
proper generalisation of the class of one-safe place/transition systems, where conflict and
concurrency are clearly separated.

For comparing the behaviour of systems with their distributed implementation we need
a suitable equivalence notion. Since we think of open systems interacting with an envi-
ronment, and since we do not want to restrict concurrency in applications, we need an
equivalence that respects branching time and concurrency to some degree. Our implemen-
tations use transitions which are invisible to the environment, and this should be reflected
in the equivalence by abstracting from such transitions. However, we do not want imple-
mentations to introduce divergence. In the light of these requirements we work with two
semantic equivalences. Step failures equivalence is one of the weakest equivalences that
captures branching time, concurrency and divergence to some degree; whereas branching
ST-bisimilarity with explicit divergence fully captures branching time, divergence, and those
aspects of concurrency that can be represented by concurrent actions overlapping in time.
We obtain the same characterisation for both notions of equivalence, and thus implicitly for
all notions in between these extremes.

We model distributed systems consisting of sequential components as an appropriate
class of Petri nets, called LSGA nets. These are obtained by composing nets with sequential
behaviour by means of an asynchronous parallel composition. We show that this class cor-
responds exactly to a more abstract notion of distributed systems, formalised as distributed
nets [GGS08].

We then consider distributability of system specifications which are represented as struc-
tural conflict nets. A net N is distributable if there exists a distributed implementation of
N , that is a distributed net which is semantically equivalent to N . In the implementa-
tion we allow unobservable transitions, and labellings of transitions, so that single actions
of the original system may be implemented by multiple transitions. However, the system
specifications for which we search distributed implementations are plain nets without these
features. This restriction is motivated in the conclusion.

ON CHARACTERISING DISTRIBUTABILITY 3

We give a precise characterisation of distributable nets in terms of a semi-structural
property. This characterisation provides a formal proof that the interplay between choice
and synchronous communication is a key issue for distributability.

To establish the correctness of our characterisation we develop a new method for rig-
orously proving the equivalence of two Petri nets, one of which known to be plain, up to
branching ST-bisimilarity with explicit divergence.

2. Basic Notions

In this paper we employ signed multisets, which generalise multisets by allowing elements
to occur in it with a negative multiplicity.

Definition 2.1. Let X be a set.

− A signed multiset over X is a function A : X → Z, i.e. A ∈ ZX .
It is a multiset iff A ∈ NX , i.e. iff A(x) ≥ 0 for all x ∈ X.

− x ∈ X is an element of a signed multiset A ∈ ZX , notation x ∈ A, iff A(x) 6= 0.
− For signed multisets A and B over X we write A ≤ B iff A(x) ≤ B(x) for all x ∈X;

A ∪B denotes the signed multiset over X with (A ∪B)(x) := max(A(x), B(x)),
A ∩B denotes the signed multiset over X with (A ∩B)(x) := min(A(x), B(x)),
A+B denotes the signed multiset over X with (A+B)(x) := A(x) +B(x),
A−B denotes the signed multiset over X with (A−B)(x) := A(x)−B(x), and
for k ∈ Z the signed multiset k ·A is given by (k ·A)(x) := k · A(x).

− The function ∅ : X → N, given by ∅(x) := 0 for all x ∈X, is the empty multiset over X.
− If A is a signed multiset over X and Y ⊆ X then A ↾Y denotes the signed multiset over

Y defined by (A ↾ Y)(x) := A(x) for all x ∈ Y .
− The cardinality |A| of a signed multiset A over X is given by |A| :=

∑

x∈X |A(x)|.
− A signed multiset A over X is finite iff |A| <∞, i.e., iff the set {x | x ∈A} is finite.

We write A ∈F Z
X or A ∈F N

X to indicate that A is a finite (signed) multiset over X.
− Any function f : X → Z or f : X → Z

Y from X to either the integers or the signed
multisets over some set Y extends to the finite signed multisets A over X by f(A) =
∑

x∈X A(x) · f(x).

Two signed multisets A : X → Z and B : Y → Z are extensionally equivalent iff A ↾(X∩Y) =
B ↾(X ∩ Y), A ↾(X \ Y) = ∅, and B ↾(Y \X) = ∅. In this paper we often do not distinguish
extensionally equivalent signed multisets. This enables us, for instance, to use A+B even
when A and B have different underlying domains. A multiset A with A(x) ∈ {0, 1} for all
x is identified with the set {x | A(x) = 1}. A signed multiset with elements x and y, having
multiplicities −2 and 3, is denoted as −2 · {x}+ 3 · {y}.

We consider here general labelled place/transition systems with arc weights. Arc
weights are not necessary for the results of the paper, but are included for the sake of
generality.

Definition 2.2. Let Act be a set of visible actions and τ 6∈Act be an invisible action. Let

Actτ := Act
.

∪ {τ}. A (labelled) Petri net (over Actτ) is a tuple N = (S, T, F,M0, ℓ) where

− S and T are disjoint sets (of places and transitions, together called the elements of N),
− F : (S × T ∪ T × S)→ N (the flow relation including arc weights),
− M0 : S → N (the initial marking), and
− ℓ : T → Actτ (the labelling function).

4 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

Petri nets are depicted by drawing the places as circles and the transitions as boxes, con-
taining their label. Identities of places and transitions are displayed next to the net element.
When F (x, y) > 0 for x, y ∈S ∪ T there is an arrow (arc) from x to y, labelled with the arc
weight F (x, y). Weights 1 are elided. When a Petri net represents a concurrent system, a
global state of this system is given as a marking, a multiset M of places, depicted by placing
M(s) dots (tokens) in each place s. The initial state is M0.

The behaviour of a Petri net is defined by the possible moves between markings M
and M ′, which take place when a finite multiset G of transitions fires. In that case, each
occurrence of a transition t in G consumes F (s, t) tokens from each place s. Naturally,
this can happen only if M makes all these tokens available in the first place. Next, each t
produces F (t, s) tokens in each s. Definition 2.4 formalises this notion of behaviour.

Definition 2.3. Let N = (S, T, F,M0, ℓ) be a Petri net and x ∈ S ∪ T .
The multisets •x, x• : S ∪ T → N are given by •x(y) = F (y, x) and x•(y) = F (x, y) for
all y ∈ S ∪ T . If x ∈ T , the elements of •x and x• are called pre- and postplaces of x,
respectively, and if x ∈ S we speak of pre- and posttransitions. The token replacement
function J K : T → Z

S is given by JtK = t• − •t for all t ∈ T . These functions extend to
finite signed multisets as usual (see Definition 2.1).

Definition 2.4. Let N = (S, T, F,M0, ℓ) be a Petri net, G ∈NT, G non-empty and finite,
and M,M ′ ∈ NS.
G is a step from M to M ′, written M [G〉N M ′, iff

− •G ≤M (G is enabled) and
− M ′ = (M − •G) +G• = M + JGK.

Note that steps are (finite) multisets, thus allowing self-concurrency, i.e. the same transition
can occur multiple times in a single step. We write M [t〉N M ′ for M [{t}〉N M ′, whereas
M [G〉N abbreviates ∃M ′. M [G〉N M ′. We may omit the subscript N if clear from context.

In our nets transitions are labelled with actions drawn from a set Act
.

∪ {τ}. This
makes it possible to see these nets as models of reactive systems that interact with their
environment. A transition t can be thought of as the occurrence of the action ℓ(t). If
ℓ(t) ∈ Act, this occurrence can be observed and influenced by the environment—we call
such transitions external or visible, but if ℓ(t) = τ , it cannot and t is an internal or silent
transition. Transitions whose occurrences cannot be distinguished by the environment carry
the same label. In particular, since the environment cannot observe the occurrence of
internal transitions at all, they are all labelled τ .

The labelling function ℓ extends to finite signed multisets of transitions G ∈ ZT by
ℓ(G) :=

∑

t∈T G(t) · {ℓ(t)}. For A,B ∈ ZActτ we write A ≡ B iff ℓ(A)(a) = ℓ(B)(a)
for all a ∈ Act, i.e. iff A and B contain the same (numbers of) visible actions, allowing
ℓ(A)(τ) 6= ℓ(B)(τ). Hence ℓ(G) ≡ ∅ indicates that ℓ(t) = τ for all transitions t ∈ T with
G(t) 6= 0.

Definition 2.5. Let N = (S, T, F,M0, ℓ) be a Petri net.

− The set [M0〉N of reachable markings of N is defined as the smallest set containing M0

that is closed under [G〉N , meaning that if M ∈ [M0〉N and M [G〉N M ′ then M ′∈ [M0〉N .
− N is one-safe iff M ∈ [M0〉N ⇒ ∀s ∈ S. M(s) ≤ 1.
− The concurrency relation ⌣ ⊆ T 2 is given by t ⌣ u⇔ ∃M ∈ [M0〉. M [{t}+{u}〉.
− N is a structural conflict net iff for all t, u ∈ T with t ⌣ u we have •t ∩ •u = ∅.

ON CHARACTERISING DISTRIBUTABILITY 5

We use the term plain nets for Petri nets where ℓ is injective and no transition has the label
τ , i.e. essentially unlabelled nets.

This paper first of all aims at studying finite Petri nets: nets with finitely many places
and transitions. Additionally, our work also applies to infinite nets with the properties that
•t 6= ∅ for all transitions t ∈ T , and any reachable marking (a) is finite, and (b) enables
only finitely many transitions. Henceforth, we call such nets finitary . Finitariness can be
ensured by requiring |M0| < ∞ ∧ ∀t ∈ T. •t 6= ∅ ∧ ∀x ∈ S ∪ T. |x•| < ∞, i.e. that the
initial marking is finite, no transition has an empty set of preplaces, and each place and
transition has only finitely many outgoing arcs. Our characterisation of distributability
pertains to finitary plain structural conflict nets, and our distributed implementations are
again structural conflict nets, but they need not be finitary (nor plain). However, our
distributed implementations of finite nets are again finite.

3. Semantic Equivalences

In this section, we give an overview on some semantic equivalences for reactive systems.
Most of these may be defined formally for Petri nets in a uniform way, by first defining
equivalences for transition systems and then associating different transition systems with a
Petri net. This yields in particular different non-interleaving equivalences for Petri nets.

Definition 3.1. Let Act be a set of visible actions and τ 6∈ Act be an invisible action. Let

Actτ := Act
.

∪{τ}. A labelled transition system (LTS) (over Actτ) is a triple (S,T,M0) with

− S a set of states,
− T ⊆ S× Actτ ×S a transition relation
− and M0 ∈ S the initial state.

Given an LTS (S,T,M0) with M,M′ ∈ S and α ∈ Actτ , we write M
α
−→ M′ for

(M, α,M′) ∈ T. We write M
α
−→ for ∃M′. M

α
−→ M′ and M X

α
−→ for ∄M′. M

α
−→ M′.

Furthermore, M
(α)
−→M′ denotes M

α
−→M′∨ (α= τ ∧M=M′), meaning that in case α= τ

performing a τ -transition is optional. For a1a2 · · · an ∈ Act∗ we write M
a1a2···an======⇒M′ when

M =⇒
a1−→=⇒

a2−→=⇒ · · · =⇒
an−→=⇒M′

where =⇒ denotes the reflexive and transitive closure of
τ
−→. A state M ∈ S is said to

be reachable iff there is a σ ∈ Act∗ such that M0
σ

=⇒ M. The set of all reachable states
is denoted by [M0〉. In case there is an infinite sequence of states (Mk)k∈N such that
M0 ∈ [M0〉 and Mk τ

−→Mk+1 for all k ∈ N, the LTS is said to display divergence.
Many semantic equivalences on LTSs that in some way abstract from internal transitions

are defined in the literature; an overview can be found in [vG93]. On divergence-free LTSs,
the most discriminating semantics in the spectrum of equivalences of [vG93], and the only
one that fully respects the branching structure of related systems, is branching bisimilarity,
proposed in [GW89].

Definition 3.2. Two LTSs (S1,T1,M01) and (S2,T2,M02) are branching bisimilar iff
there exists a relation B ⊆ S1×S2—a branching bisimulation—such that, for all α∈Actτ :

1. M01BM02;

2. if M1BM2 and M1
α
−→M′1 then ∃M†2,M

′
2 such that M2 =⇒M

†
2

(α)
−→M′2, M1BM

†
2 and

M′1BM
′
2;

3. if M1BM2 and M2
α
−→M′2 then ∃M†1,M

′
1 such that M1 =⇒M

†
1

(α)
−→M′1, M

†
1BM2 and

M′1BM
′
2.

6 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

Branching bisimilarity with explicit divergence [vG93, GW96, GLT09] is a variant of branch-
ing bisimilarity that fully respects the diverging behaviour of related systems. It is the most
discriminating semantics in the spectrum of equivalences of [vG93].

Definition 3.3. Two LTSs (S1,T1,M01) and (S2,T2,M02) are branching bisimilar with
explicit divergence iff there exists a branching bisimulation B ⊆ S1×S2 such that further-
more

4. if M1BM2 and there is an infinite sequence of states (Mk
1)k∈N such that M1 = M0

1,

Mk
1

τ
−→Mk+1

1 and Mk
1BM2 for all k ∈ N, then there exists an infinite sequence of states

(Mℓ
2)ℓ∈N such that M2 = M0

2, M
ℓ
2

τ
−→Mℓ+1

2 for all ℓ ∈ N, and Mk
1BM

ℓ
2 for all k, ℓ ∈ N;

5. if M1BM2 and there is an infinite sequence of states (Mℓ
2)ℓ∈N such that M2 = M0

2,

Mℓ
2

τ
−→Mℓ+1

2 and M1BM
ℓ
2 for all ℓ ∈ N, then there exists an infinite sequence of states

(Mk
1)k∈N such that M1 = M0

1, M
k
1

τ
−→Mk+1

1 for all k ∈ N, and Mk
1BM

ℓ
2 for all k, ℓ ∈ N.

Since in this paper we mainly compare systems of which one admits no divergence at all,
the definition simplifies to the requirement that the other system may not diverge either.

Proposition 3.4. Let L1, L2 be two LTSs, of which L2 does not display divergence. Then
L1 and L2 are branching bisimilar with explicit divergence iff L1 and L2 are branching
bisimilar and L1 does not display divergence either.

Proof. “If”: In case neither L1 nor L2 display divergence, any branching bisimulation B
between L1 and L2, when restricted to the reachable states of L1 and L2, trivially satisfies
Clauses 4 and 5 above.

“Only if”: Suppose that B is a branching bisimulation between L1 = (S1,T1,M01)
and L2 = (S2,T2,M02) that satisfies Clauses 4 and 5 above, and suppose L1 displays
divergence, i.e. there is an infinite sequence of states (Mk

1)k∈N such that M01
σ

=⇒ M0
1 for

some σ ∈ Act∗ and Mk
1

τ
−→M

k+1
1 for all k ∈ N. By Definition 3.2, Clauses 1 and 2, there

exists an infinite sequence of states (Mk
2)k∈N such that M02

σ
=⇒ M0

2, M
k
2 =⇒ Mk+1

2 and

Mk
1BM

k
2 for all k ∈ N. In case infinitely many of those Mk

2 are different, this sequence
constitutes a divergence of L2. Otherwise, there is an k0 ≥ 0 such that all Mk

2 for k ≥ k0
are equal, and then L2 has a divergence by Clause 4.

One of the semantics reviewed in [vG93] that respects branching time and divergence
only to a minimal extent, is (stable) failures equivalence, proposed in [BKO87] and further
elaborated in [Ro98]. It is a variant of the failures equivalence of [BHR84], only differing in
the treatment of divergence.1

Definition 3.5. Let L = (S,T,M0) be an LTS, σ ∈ Act∗ and X ⊆ Act, X finite.2

σ is a trace of L iff ∃M. M0
σ

=⇒M.
〈σ,X〉 is a failure pair of L iff ∃M. M0

σ
=⇒M ∧M X

τ
−→ ∧∀a ∈X. M X

a
−→ .

1When comparing two systems without divergence, the stable failure equivalence coincides with the fail-
ures equivalence of [BHR84]. When comparing systems of which one is known to be divergence-free—as
we will do in this paper—the stable failures semantics is strictly less discriminating than the failures equiv-
alence of [BHR84]—only the latter guarantees that the other system is divergence-free as well. As a less
discriminating equivalence will give rise to stronger results about the absence of distributed implementa-
tions of certain systems, we will use a version of the stable failures equivalence, rather than of the failures
equivalence from [BHR84].

2Although the version without the restriction that X be finite has arguably better properties, we here
use the version with this restriction—the finite failures equivalence of [vG93]—since it is less discriminating.

ON CHARACTERISING DISTRIBUTABILITY 7

We write T(L) for the set of all traces, and F(L) for the set of all failure pairs of L.
Two LTSs L1 and L2 are failures equivalent iff T(L1) = T(L2) and F(L1) = F(L2).

As indicated in [GG01], see in particular the diagram on Page 317 (or 88), equivalences
on LTSs have been ported to Petri nets and other causality respecting models of concurrency
chiefly in five ways: we distinguish interleaving semantics, step semantics, split semantics,
ST-semantics and causal semantics. Causal semantics fully respect the causal relationships
between the actions of related systems, whereas interleaving semantics fully abstract from
this information. Step semantics differ from interleaving semantics by taking into account
the possibility of multiple actions to occur simultaneously (in one step); this carries a
minimal amount of causal information. ST-semantics respect causality to the extent that it
can be expressed in terms of the possibility of durational actions to overlap in time. They
are formalised by executing a visible action a in two phases: its start a+ and its termination
a−. Moreover, terminating actions are properly matched with their starts. Split semantics
are a simplification of ST-semantics in which the matching of starts and terminations is
dropped.

Interleaving semantics on Petri nets can be formalised by associating to each net N =
(S, T, F,M0, ℓ) the LTS (S,T,M0) with S the set of markings of N and T given by

M1
α
−→M2 :⇔ ∃ t ∈ T. ℓ(t) = α ∧M1 [t〉 M2.

Here we take Act := Act. Now each equivalence on LTSs from [vG93] induces a correspond-
ing interleaving equivalence on nets by declaring two nets equivalent iff the associated LTSs
are. For example, interleaving branching bisimilarity is the relation of Definition 3.2 with
the M’s denoting markings, and the α’s actions from Actτ .

Step semantics on Petri nets can be formalised by associating another LTS to each net.
Again we take S to be the markings of the net, and M0 the initial marking, but this time
Act consists of the steps over Act, the non-empty, finite multisets A of visible actions from
Act, and the transition relation T is given by

M1
A
−→M2 :⇔ ∃G ∈F N

T . ℓ(G) = A ∧ τ /∈ ℓ(G) ∧M1 [G〉 M2

with τ -transitions defined just as in the interleaving case:

M1
τ
−→M2 :⇔ ∃ t ∈ T. ℓ(t) = τ ∧M1 [t〉 M2.

In particular, the step version of failures equivalence would be the relation of Definition 3.5
with the M’s denoting markings, the a’s steps over Act, the X’s sets of steps, and the σ’s
sequences of steps. This form of step failures semantics, but based on the failures semantics
of [BHR84] rather than the stable failures semantics of Definition 3.5, has been studied in
[TV89]. However, variations in this type of definition are possible. In this paper we employ
a form of step failures semantics that is a bit closer to interleaving semantics, thereby
coarsening the equivalence and strengthening the final result: σ is a sequence of single
actions, whereas the set X of impossible continuations after σ is a set of steps. Moreover,
we drop the comparison of the sets of traces. We define this notion directly on Petri nets,
without using intermediate LTSs.

Definition 3.6. Let N = (S, T, F,M0, ℓ) be a Petri net, σ ∈ Act∗ and X ⊆ NAct, X finite.
〈σ,X〉 is a step failure pair of N iff

∃M.M0
σ

=⇒M ∧M X
τ
−→ ∧∀A ∈X. M X

A
−→ .

8 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

We write F(N) for the set of all step failure pairs of N .
Two Petri nets N1 and N2 are step failures equivalent, N1 ≈F N2, iff F(N1) = F(N2).

Next we propose a general definition on Petri nets of ST-versions of each of the semantics
of [vG93]. Again we do this through a mapping from nets to a suitable LTS. An ST-marking
of a net (S, T, F,M0, ℓ) is a pair (M,U) ∈ NS×T ∗ of a normal marking, together with a
sequence of visible transitions currently firing. The initial ST-marking is M0 := (M0, ǫ).
The elements of Act± := {a+, a−n | a ∈ Act, n > 0} are called visible action phases, and

Act±τ := Act±
.

∪ {τ}. For U ∈ T ∗, we write t ∈(n) U if t is the nth element of U . Furthermore
U−n denotes U after removal of the nth transition.

Definition 3.7. Let N = (S, T, F,M0, ℓ) be a Petri net, labelled over Actτ .
The ST-transition relations

η
−→ for η ∈Act±τ between ST-markings are given by

(M,U)
a+
−→ (M ′, U ′) iff ∃t ∈ T. ℓ(t) = a ∧M [t〉 ∧M ′ = M − •t ∧ U ′ = Ut.

(M,U)
a−n

−−→ (M ′, U ′) iff ∃t ∈(n) U. ℓ(t) = a ∧ U ′ = U−n ∧M ′ = M + t•.
(M,U)

τ
−→ (M ′, U ′) iff M

τ
−→M ′ ∧ U ′ = U .

Now the ST-LTS associated to a net N is (S,T,M0) with S the set of ST-markings of
N , Act := Act±, T as defined in Definition 3.7, and M0 the initial ST-marking. Again,
each equivalence on LTSs from [vG93] induces a corresponding ST-equivalence on nets
by declaring two nets equivalent iff their associated LTSs are. In particular, branching ST-
bisimilarity is the relation of Definition 3.2 with the M’s denoting ST-markings, and the α’s
action phases from Act±τ . We write N1 ≈

∆
bSTb N2 iff N1 and N2 are branching ST-bisimilar

with explicit divergence.
ST-bisimilarity was originally proposed in [GV87]. It was extended to a setting with

internal actions in [Vo93], based on the notion of weak bisimilarity of [Mi89], which is
a bit less discriminating than branching bisimilarity. The above can be regarded as a
reformulation of the same idea; the notion of weak ST-bisimilarity defined according to the
recipe above agrees with the ST-bisimilarity of [Vo93].

The next proposition says that branching ST-bisimilarity with explicit divergence is
more discriminating than (i.e. stronger than, finer than, or included in) step failures equiv-
alence.

Proposition 3.8. Let N1 and N2 be Petri nets. If N1 ≈
∆
bSTb N2 then N1 ≈F N2.

Proof. Suppose N1 ≈
∆
bSTb N2 and 〈σ,X〉 ∈ F(N1). By symmetry it suffices to show that

〈σ,X〉 ∈ F(N2).
SinceN1 ≈

∆
bSTb N2, there must be a branching bisimulation B between the ST-markings

ofN1 = (S1, T1, F1,M01, ℓ1) andN2 = (S2, T2, F2,M02, ℓ2). In particular, (M01, ǫ)B (M02, ǫ).
Let σ =: a1a2 · · · an ∈ Act∗. Then M01 =⇒

a1−→=⇒
a2−→=⇒ · · · =⇒

an−→=⇒M ′1 for a mark-

ing M ′1 ∈ N
S1 with M ′1 X

τ
−→ and ∀A ∈ X. M ′1 X

A
−→. So (M01, ǫ) =⇒

a+1−→
a−1
1−→=⇒

a+2−→
a−1
2−→=⇒

· · · =⇒
a+n−→

a−1
n−→=⇒ (M ′1, ǫ). Thus, using the properties of a branching bisimulation on

the ST-LTSs associated to N1 and N2, there must be a marking M ′2 ∈N
S2 such that

(M02, ǫ)=⇒
a+1−→=⇒

a−1
1−→=⇒

a+2−→=⇒
a−1
2−→=⇒ · · · =⇒

a+n−→=⇒
a−1
n−→=⇒(M ′2, ǫ) and (M ′1, ǫ)B (M

′
2, ǫ).

Since (M ′1, ǫ) X
τ
−→, the ST-marking (M ′1, ǫ) admits no divergence. As ≈∆

bSTb respects this
property (cf. the proof of Proposition 3.4), also (M ′2, ǫ) admits no divergence, and there

must be an M ′′2 ∈ N
S2 with M ′′2 X

τ
−→ and (M ′2, ǫ) =⇒ (M ′′2 , ǫ). Clause 3. of a branching

bisimulation gives (M ′1, ǫ)B (M
′′
2 , ǫ), and Definition 3.7 yields M02

σ
=⇒ M ′′2 . Here we use

that if (M,U)
a−1

−→
τ
−→ (M ′, U ′) then (M,U)

τ
−→

a−1

−→ (M ′, U ′).

ON CHARACTERISING DISTRIBUTABILITY 9

Now let B = {b1, . . . , bm} ∈ X. Then M ′1 X
B
−→. Suppose, towards a contradiction, that

M ′′2
B
−→. Then (M ′′2 , ǫ)

b+1−→
b+2−→ · · ·

b+m−→. Property 2. of a branching bisimulation implies

(M ′1, ǫ)
b+1−→

b+2−→ · · ·
b+m−→ and hence M ′1

B
−→. This is a contradiction, so M ′′2 X

B
−→. It follows

that 〈σ,X〉 ∈ F(N2).

In this paper we employ both step failures equivalence and branching ST-bisimilarity
with explicit divergence. Fortunately it will turn out that for our purposes the latter
equivalence coincides with its split version (since always one of the compared nets is plain,
see Proposition 3.15).

A split marking of a net N = (S, T, F,M0, ℓ) is a pair (M,U) ∈ NS ×NT of a normal
marking M , together with a multiset of visible transitions currently firing. The initial split
marking is Mo := (M0, ∅). A split marking can be regarded as an abstraction from an ST-
marking, in which the total order on the (finite) multiset of transitions that are currently
firing has been dropped. Let Act±split := {a

+, a− | a ∈ Act}.

Definition 3.9. Let N = (S, T, F,M0, ℓ) be a Petri net, labelled over Actτ .

The split transition relations
ζ
−→ for ζ ∈Act±split

.

∪ {τ} between split markings are given by

(M,U)
a+
−→ (M ′, U ′) iff ∃t ∈ T. ℓ(t) = a ∧M [t〉 ∧M ′ = M − •t ∧ U ′ = U + {t}.

(M,U)
a−
−→ (M ′, U ′) iff ∃t ∈ U. ℓ(t) = a ∧ U ′ = U − {t} ∧M ′ = M + t•.

(M,U)
τ
−→ (M ′, U ′) iff M

τ
−→M ′ ∧ U ′ = U .

Note that (M,U)
a+
−→ iff M

a
−→, whereas (M,U)

a−
−→ iff a ∈ ℓ(U). With induction on

reachability of markings it is furthermore easy to check that (M,U) ∈ [M0〉 iff τ /∈ ℓ(U)
and M +•U ∈ [M0〉.

The split LTS associated to a net N is (S,T,M0) with S the set of split markings of
N , Act := Act±, T as defined in Definition 3.9, and M0 the initial split marking. Again,
each equivalence on LTSs from [vG93] induces a corresponding split equivalence on nets by
declaring two nets equivalent iff their associated LTSs are. In particular, branching split
bisimilarity is the relation of Definition 3.2 with the M’s denoting split markings, and the
α’s action phases from Act±split

.

∪ {τ}.

For M = (M,U) ∈ NS × T ∗ an ST-marking, let M = (M,U) ∈ NS ×NT be the split
marking obtained by converting the sequence U into the multiset U , where U(t) is the num-
ber of occurrences of the transition t ∈ T in U . Moreover, define ℓ(M) by ℓ(M,U) := ℓ(U)
and ℓ(t1t2 · · · tk) := ℓ(t1)ℓ(t2) · · · ℓ(tk). Furthermore, for η ∈ Act±τ , let η ∈ Act±split

.

∪ {τ} be
given by a+ := a+, a−n := a− and τ := τ .

Observation 3.10. LetM,M′ be ST-markings,M† a split marking, η∈Act±τ and ζ∈Act±split
∪ {τ}. Then

(1) M ∈ NS×T ∗ is the initial ST-marking of N iff M ∈ NS×NT is the initial split marking
of N ;

(2) if M
η
−→M′ then M

η
−→M′;

(3) if M
ζ
−→M† then there is a M′ ∈ NS × T ∗ and η ∈ Act±τ such that M

η
−→ M′, η = ζ

and M′ = M†;
(4) if M

(η)
−→M′ then M

(η)
−→M′;

(5) if M
(ζ)
−→M† then there is a M′ ∈ NS × T ∗ and η ∈ Act±τ such that M

(η)
−→ M′, η = ζ

and M′ = M†;
(6) if M =⇒M′ then M =⇒M′;
(7) if M =⇒M† then there is a M′ ∈ NS × T ∗ such that M =⇒M′ and M′ = M†.

10 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

Lemma 3.11. Let N1 = (S1, T1, F1,M01, ℓ) and N2 = (S2, T2, F2,M02, ℓ2) be two nets,
N2 being plain; let M1,M

′
1 be ST-markings of N1, and M2,M

′
2 ST-markings of N2. If

ℓ(M2) = ℓ(M1), M1
η
−→ M′1 and M2

(η′)
−−→ M′2 with η′ = η, then there is an M′′2 with

M2
(η)
−→M′′2, ℓ(M

′′
2) = ℓ(M′1), and M′′2 = M′2.

Proof. If M
η
−→M′ or M

(η)
−→M′ then ℓ(M′) is completely determined by ℓ(M) and η. For

this reason the requirement ℓ(M′′2) = ℓ(M′1) will hold as soon as the other requirements are
met.

First suppose η is of the form τ or a+. Then η = η and moreover η′ = η implies η′ = η.
Thus we can take M′′2 := M′2.

Now suppose η := a−n for some n > 0. Then η′ = a−m for some m > 0. As M1
η
−→,

the nth element of ℓ(M1) must (exist and) be a. Since ℓ(M2) = ℓ(M1), also the nth element
of ℓ(M2) must be a, so there is an M′′2 with M2

(η)
−→ M′′2 . Let M2 := (M2, U2). Then

U2 is a sequence of transitions of which the nth and the mth elements are both labelled a.
Since the net N2 is plain, those two transitions must be equal. Let M′2 := (M ′2, U

′
2) and

M′′2 := (M ′′2 , U
′′
2). We find that M ′′2 =M ′2 and U ′′2 = U ′2. It follows that M

′′
2 = M′2.

Observation 3.12. If M =⇒M′ for ST-markings M,M′ then ℓ(M′) = ℓ(M).

Observation 3.13. If ℓ(M1) = ℓ(M2) and M2
a−n

−−→ for some a ∈ Act and n > 0, then
M1

a−n

−−→.

Observation 3.14. If M
a−n

−−→ M′ and M
a−n

−−→ M′′ for some a ∈ Act and n > 0, then
M′ = M′′.

Proposition 3.15. Let N1 = (S1, T1, F1,M01, ℓ) and N2 = (S2, T2, F2,M02, ℓ2) be two nets,
N2 being plain. Then N1 and N2 are branching ST-bisimilar (with explicit divergence) iff
they are branching split bisimilar (with explicit divergence).

Proof. Suppose B is a branching ST-bisimulation between N1 and N2. Then, by Observa-
tion 3.10, the relation B split := {(M1,M2) | (M1,M2) ∈ B } is a branching split bisimulation
between N1 and N2.

Now let B be a branching split bisimulation between N1 and N2. Then, using Obser-
vation 3.10, the relation B ST := {(M1,M2) | ℓ1(M1) = ℓ2(M2) ∧ (M1,M2) ∈ B } turns out
to be a branching ST-bisimulation between N1 and N2:

1. M01B STM02 follows from Observation 3.10(1), since M01BM02 and ℓ(M01)=ℓ(M02)=ǫ.

2. Suppose M1B STM2 and M1
η
−→ M′1. Then M1BM2 and M1

η
−→M′1. Hence ∃M†2,M

‡
2

such that M2 =⇒ M
†
2

(η)
−→ M

‡
2, M1BM

†
2 and M′1BM

‡
2. As N2 is plain, M†2 = M2. By

Observation 3.10(5), using that M2
(η)
−→ M

‡
2, ∃M

′
2, η

′ such that M2
(η′)
−−→ M′2, η

′ = η

and M′2 = M
‡
2. By Lemma 3.11, there is an ST-marking M′′2 such that M2

(η)
−→ M′′2 ,

ℓ(M′′2) = ℓ(M′1), and M′′2 = M′2 = M
‡
2. It follows that M

′
1B STM

′′
2 .

3. Suppose M1B STM2 and M2
η
−→ M′2. Then M1BM2 and M2

η
−→M′2. Hence ∃M†1,M

‡
1

such that M1 =⇒ M
†
1

(η)
−→ M

‡
1, M

†
1BM2 and M

‡
1BM

′
2. By Observation 3.10(7), ∃M∗1

such that M1 =⇒M∗1 and M∗1 = M
†
1. By Observation 3.12, ℓ(M∗1) = ℓ(M1) = ℓ(M2), so

M∗1B STM2. Since N2 is plain, η 6= τ .

• Let η = a+ for some a ∈ Act. Using that M∗1
(η)
−→M

‡
1, by Observation 3.10(5) ∃M′1, η

′

such that M∗1
(η′)
−−→ M′1, η

′ = η and M′1 = M
‡
1. It must be that η′ = η = a+ and

ℓ(M′1) = ℓ(M∗1)a = ℓ(M2)a = ℓ(M′2). Hence M′1B STM
′
2.

ON CHARACTERISING DISTRIBUTABILITY 11

• Let η = a−n for some a ∈ Act and n > 0. By Observation 3.13, ∃M′1 with M∗1
η
−→

M′1. By Part 2. of this proof, ∃M′′2 such that M2
(η)
−→ M′′2 and M′1B STM

′′
2 . By

Observation 3.14 M′′2 = M′2.

Since the net N2 is plain, it has no divergence. In such a case, the requirement “with
explicit divergence” requires N1 to be free of divergence as well, regardless of whether split
or ST-semantics is used.

In this paper we will not consider causal semantics. The reason is that our distributed im-
plementations will not fully preserve the causal behaviour of nets. We will further comment
on this in the conclusion.

4. Distributed Systems

In this section, we stipulate what we understand by a distributed system, and subsequently
formalise a model of distributed systems in terms of Petri nets.

− A distributed system consists of components residing on different locations.
− Components work concurrently.
− Interactions between components are only possible by explicit communications.
− Communication between components is time consuming and asynchronous.

Asynchronous communication is the only interaction mechanism in a distributed system for
exchanging signals or information.

− The sending of a message happens always strictly before its receipt (there is a causal
relation between sending and receiving a message).

− A sending component sends without regarding the state of the receiver; in particular
there is no need to synchronise with a receiving component. After sending the sender
continues its behaviour independently of receipt of the message.

As explained in the introduction, we will add another requirement to our notion of a dis-
tributed system, namely that its components only allow sequential behaviour.

4.1. LSGA nets. Formally, we model distributed systems as nets consisting of component
nets with sequential behaviour and interfaces in terms of input and output places.

Definition 4.1. Let N = (S, T, F,M0, ℓ) be a Petri net, I,O ⊆ S, I ∩O = ∅ and O• = ∅.

1. (N, I,O) is a component with interface (I,O).
2. (N, I,O) is a sequential component with interface (I,O) iff
∃Q⊆ S\(I ∪O) with ∀t ∈ T.|•t ↾Q| = 1 ∧ |t•↾Q| = 1 and |M0 ↾Q| = 1.

An input place i ∈ I of a component C = (N, I,O) can be regarded as a mailbox of C for a
specific type of messages. An output place o∈O, on the other hand, is an address outside C
to which C can send messages. Moving a token into o is like posting a letter. The condition
o• = ∅ says that a message, once posted, cannot be retrieved by the component.3

A set of places like Q above is a special case of an S-invariant. The requirements
guarantee that the number of tokens in these places remains constant, in this case 1. It

3We could have required that •I = ∅, thereby disallowing a component to put messages in its own
mailbox. This would not lead to a loss of generality in the class of distributed systems that can be obtained
as the asynchronous parallel composition of sequential components, defined below. However, this property
is not preserved under asynchronous parallel composition (defined below), and we like the composition of a
set of (sequential) components to be a component itself (but not a sequential one).

12 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

follows that no two transitions can ever fire concurrently (in one step). Conversely, whenever
a net is sequential, in the sense that no two transitions can fire in one step, it is easily
converted into a behaviourally equivalent net with the required S-invariant, namely by
adding a single marked place with a self-loop to all transitions. This modification preserves
virtually all semantic equivalences on Petri nets from the literature, including ≈∆

bSTb.
Next we define an operator for combining components with asynchronous communica-

tion by fusing input and output places.

Definition 4.2. Let K be an index set.
Let ((Sk, Tk, Fk,M0k, ℓk), Ik, Ok) with k ∈ K be components with interface such that (Sk ∪
Tk) ∩ (Sl ∪ Tl) = (Ik ∪ Ok) ∩ (Il ∪ Ol) for all k, l ∈ K with k 6= l (components are disjoint
except for interface places) and Ik ∩ Il = ∅ for all k, l ∈ K with k 6= l (mailboxes cannot be
shared; any message has a unique recipient).
Then the asynchronous parallel composition of these components is defined by

∥

∥

∥

i∈K
((Sk, Tk, Fk,M0k, ℓk), Ik, Ok) = ((S, T, F,M0, ℓ), I, O)

with S=
⋃

k∈K Sk, T=
⋃

k∈KTk, F=
⋃

k∈K Fk, M0=
∑

k∈KM0k, ℓ=
⋃

k∈K ℓk (componentwise
union of all nets), I=

⋃

k∈K Ik (we accept additional inputs from outside), and O=
⋃

k∈KOk\
⋃

k∈K Ik (once fused with an input, o ∈OI is no longer an output).

Note that the asynchronous parallel composition of components with interfaces is again a
component with interface.

Observation 4.3. ‖ is associative.

This follows directly from the associativity of the (multi)set union operator. �

We are now ready to define the class of nets representing systems of asynchronously com-
municating sequential components.

Definition 4.4. A Petri net N is an LSGA net (a locally sequential globally asynchronous
net) iff there exists an index set K and sequential components with interface Ck, k∈K, such
that (N, I,O) = ‖k∈KCk for some I and O.

Up to ≈∆
bSTb—or any reasonable equivalence preserving causality and branching time but

abstracting from internal activity—the same class of LSGA systems would have been ob-
tained if we had imposed, in Definition 4.1 of sequential components, that I, O and Q form
a partition of S and that •I = ∅.4 However, it is essential that our definition allows multiple
transitions of a component to read from the same input place.

4First of all, any i ∈ I with •i 6= ∅ can be split into a pure input place, receiving tokens only from outside
the component, and an internal place, which is the target of all arcs that used to go to i. Any transition t

with i ∈ •t now needs to be split into one that takes its input token from the pure input place and one that
takes it from the internal incarnation of i. In fact, if F (i, t) = n then t needs to be split into n+1 copies.
The result of this transformation is that •I = ∅.

Next, any component C = ((S, T, F,M0, ℓ), I, O) with •I = ∅ can be replaced by an equivalent component
((S′, T ′, F ′,M ′

0, ℓ
′), I,O) whose places S′ are I

.

∪ O
.

∪ Q, where Q is the set of markings of C, each restricted
to the places outside I and O. For each transition t and markings M,M ′ of the component such that
M [t〉 M ′, writing q := M ↾(S \ (I ∪ O)) and q′ := M ′ ↾(S \ (I ∪ O)), there will be a transition tq ∈ T ′

with F ′(i, tq) = F (i, t) for all i ∈ I , F ′(tq, o) = F (t, o) for all o ∈ O, F ′(q, t) = F ′(t, q′) = 1, and F ′(p, t) =
F ′(t, p) = 0 otherwise. Moreover, ℓ′(tq) = ℓ(t) and M ′

0 consists of the single place M0 ↾(S \ (I ∪ O)). This
component clearly has the required properties.

ON CHARACTERISING DISTRIBUTABILITY 13

4.2. Distributed nets. In the remainder of this section we give a more abstract charac-
terisation of Petri nets representing distributed systems, namely as distributed Petri nets,
which we introduced in [GGS08]. This will be useful in Section 5, where we investigate dis-
tributability using this more semantic characterisation. We show below that the concrete
characterisation of distributed systems as LSGA nets and this abstract characterisation
agree.

Following [BCD02], to arrive at a class of nets representing distributed systems, we
associate localities to the elements of a net N = (S, T, F,M0, ℓ). We model this by a
function D : S ∪ T → Loc, with Loc a set of possible locations. We refer to such a function
as a distribution of N . Since the identity of the locations is irrelevant for our purposes, we
can just as well abstract from Loc and represent D by the equivalence relation ≡D on S∪T
given by x ≡D y iff D(x) = D(y).

Following [GGS08], we impose a fundamental restriction on distributions, namely that
when two transitions can occur in one step, they cannot be co-located. This reflects our
assumption that at a given location actions can only occur sequentially.

In [GGS08] we observed that Petri nets incorporate a notion of synchronous interaction,
in that a transition can fire only by synchronously taking the tokens from all of its preplaces.
In general the behaviour of a net would change radically if a transition would take its input
tokens one by one—in particular deadlocks may be introduced. Therefore we insist that in a
distributed Petri net, a transition and all its input places reside on the same location. There
is no reason to require the same for the output places of a transition, for the behaviour of
a net would not change significantly if transitions were to deposit their output tokens one
by one [GGS08].

This leads to the following definition of a distributed Petri net.

Definition 4.5. [GGS08] A Petri net N = (S, T, F,M0, ℓ) is distributed iff there exists a
distribution D such that

(1) ∀s ∈ S, t ∈ T. s ∈ •t⇒ t ≡D s,
(2) ∀t, u ∈ T. t ⌣ u⇒ t 6≡D u.

A typical example of a net which is not distributed is shown in Figure 5 on Page 19.
Transitions t and v are concurrently executable and hence should be placed on different
locations. However, both have preplaces in common with u which would enforce putting all
three transitions on the same location. In fact, distributed nets can be characterised in the
following semi-structural way.

Observation 4.6. A Petri net is distributed iff there is no sequence t0, . . . , tn of transitions
with t0 ⌣ tn and •ti−1 ∩

•ti 6= ∅ for i = 1, . . . , n. �

Since a structural conflict net is defined as a net without such a sequence with n = 1 (cf.
Definition 2.5), we obtain:

Observation 4.7. Every distributed Petri net is a structural conflict net. �

Further on, we use a more liberal definition of a distributed net, called essentially distributed.
We will show that up to ≈∆

bSTb any essentially distributed net can be converted into a
distributed net. In [GGS08] we employed an even more liberal definition of a distributed
net, which we call here externally distributed. Although we showed that up to step failures
equivalence any externally distributed net can be converted into a distributed net, this does
not hold for ≈∆

bSTb.

14 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

Definition 4.8. A net N = (S, T, F,M0, ℓ) is essentially distributed iff there exists a dis-
tribution D satisfying (1) of Definition 4.5 and

(2′) ∀t, u ∈ T. t ⌣ u ∧ ℓ(t) 6= τ ⇒ t 6≡D u.

It is externally distributed iff there exists a distribution D satisfying (1) and

(2′′) ∀t, u ∈ T. t ⌣ u ∧ ℓ(t), ℓ(u) 6= τ ⇒ t 6≡D u.

Instead of ruling out co-location of concurrent transitions in general, essentially distributed
nets permit concurrency of internal transitions—labelled τ—at the same location. Exter-
nally distributed nets even allow concurrency between visible and silent transitions at the
same location. If the transitions t and v in the net of Figure 5 would both be labelled τ ,
the net would be essentially distributed, although not distributed; in case only v would be
labelled τ the net would be externally distributed but not essentially distributed. Essen-
tially distributed nets need not be structural conflict nets; in fact, any net without visible
transitions is essentially distributed.

Definition 4.9. Given any Petri net N , the canonical co-location relation ≡C on N is the
equivalence relation on the places and transitions of N generated by Condition (1) of Defini-
tion 4.5, i.e. the smallest equivalence relation ≡D satisfying (1). The canonical distribution
of N is the distribution C that maps each place or transition to its ≡C-equivalence class.

Observation 4.10. A Petri net that is distributed (resp. essentially or externally dis-
tributed) w.r.t. any distributionD, is distributed (resp. essentially or externally distributed)
w.r.t. its canonical distribution.

This follows because whenever a co-location relation ≡D satisfies Condition (2) of Defini-
tion 4.5 (resp. Condition (2′) or (2′′) of Definition 4.8), then so does any smaller co-location
relation. Hence a net is distributed (resp. essentially or externally distributed) iff its canon-
ical distribution D satisfies (2) (resp. (2′) or (2′′)).

4.3. Correspondence between LSGA nets and distributed nets. We proceed to
show that the classes of LSGA nets, distributable nets and essentially distributable nets
essentially coincide.

That every LSGA net is distributed follows because we can place each sequential com-
ponent on a separate location. The following two lemmas constitute a formal argument.
Here we call a component with interface (N, I,O) distributed iff N is distributed.

Lemma 4.11. Any sequential component with interface is distributed.

Proof. As a sequential component displays no concurrency, it suffices to co-locate all places
and transitions.

Lemma 4.12 states that the class of distributed nets is closed under asynchronous parallel
composition.

Lemma 4.12. Let Ck = (Nk, Ik, Ok), k ∈ K, be components with interface, satisfying the
requirements of Definition 4.2, which are all distributed. Then ‖k∈KCk is distributed.

Proof. We need to find a distribution D satisfying the requirements of Definition 4.5.
Every component Ck is distributed and hence comes with a distribution Dk. Without

loss of generality the codomains of all Dk can be assumed disjoint.

ON CHARACTERISING DISTRIBUTABILITY 15

Considering each Dk as a function from net elements onto locations, a partial function
D′k can be defined which does not map any places in Ok, denoting that the element may
be located arbitrarily, and behaves as Dk for all other elements. As an output place has no
posttransitions within a component, any total function larger than (i.e. a superset of) D′k
is still a valid distribution for Nk.

Now D′ =
⋃

k∈KD
′
k is a (partial) function, as every place shared between components

is an input place of at most one. The required distribution D can be chosen as any total
function extending D′; it satisfies the requirements of Definition 4.5 since the Dk’s do.

Corollary 4.13. Every LSGA net is distributed.

Corollary 4.14. Every LSGA net is a structural conflict net.

Conversely, any distributed net N , and even any essentially distributed net N , can be trans-
formed in an LSGA net by choosing co-located transitions with their pre- and postplaces
as sequential components and declaring any place that belongs to multiple components to
be an input place of component Nk if it is a preplace of a transition in Nk, and an output
place of component Nl if it is a postplace of a transition in Nl and not an input place of Nl.
As transitions sharing a preplace are co-located, a place will be an input place of at most
one component. Furthermore, in order to guarantee that the components are sequential in
the sense of Definition 4.1, an explicit control place is added to each component—without
changing behaviour—as explained below Definition 4.1. It is straightforward to check that
the asynchronous parallel composition of all so-obtained components is an LSGA net, and
that it is equivalent to N (using ≈F , ≈∆

bSTb, or any other reasonable equivalence).

Theorem 4.15. For any essentially distributed net N there is an LSGA net N ′ with
N ′ ≈∆

bSTb N .

Proof. Let N = (S, T, F,M0, ℓ) be an essentially distributed net with a distribution D.
Then an equivalent LSGA net N ′ can be constructed by composing sequential components
with interfaces as follows.

For each equivalence class [x] of net elements according to D a sequential component
(N[x], I[x], O[x]) is created. Each such component contains one new and initially marked
place p[x] which is connected via self-loops to all transitions in [x]. The interface of the

component is formed by I[x] := (S ∩ [x])5 and O[x] := ([x] ∩ T)• \ [x]. Formally, N[x] :=
(S[x], T[x], F[x],M0[x], ℓ[x]) with

• S[x] = ((S ∩ [x]) ∪O[x] ∪ {p[x]},
• T[x] = T ∩ [x],

• F[x] = F ↾(S[x] ∪ T[x])
2 ∪ {(p[x], t), (t, p[x]) | t ∈ T[x]},

• M0[x] = (M0 ↾[x]) ∪ {p[x]}, and
• ℓ[x] = ℓ ↾[x].

All components overlap at interfaces only, as the sole places not in an interface are the
newly created p[x]. The I[x] are disjoint as the equivalence classes [x] are, so (N ′, I ′, O′) :=

‖[x]∈(S∪T)/D(N[x], O[x], I[x]) is well-defined. It remains to be shown that N ′ ≈∆
bSTb N . The

elements of N ′ are exactly those of N plus the new places p[x], which stay marked con-
tinuously except when a transition from [x] is firing, and never connect two concurrently
enabled transitions.

5Alternatively, we could take I[x] := (T\[x])• ∩ [x].

16 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

at b u c v

τ

τ

τ

τ

Figure 1: The LSGA net obtained from converting the essentially distributed net of Figure 4.

As we cannot have concurrently firing visible transitions on a single location, |U∩[x]| ≤ 1
for any reachable ST-marking (M,U) of N and any x ∈ S ∪ T , i.e. for any location [x].
Here U is the multiset representation of the sequence U , defined in Section 3. The relation
{

((M,U), (M∪PU , U)) | (M,U) is a reachable ST-marking of N,PU = {p[x] | U∩[x] = ∅}
}

is a bijection between the reachable ST-markings of N ′ and N that preserves the ST-
transition relations between them. In particular, if (M,U)

τ
−→ (M ′, U ′), using a silent

transition that belongs to the equivalence class [x], then U ′ = U and U∩[x] = ∅, i.e. no
transition at location [x] is currently firing, using that N is essentially distributed. Hence
p[x] ∈ PU and thus (M∪PU , U)

τ
−→ (M ′∪PU , U). (This argument does not extend to

externally distributed nets N .) From this it follows that N ′ ≈∆
bSTb N .

Example 4.16. In Figure 4 appears an example of an essentially distributed net; the loca-
tion borders are indicated. This net is not distributed, and thus not an LSGA net, because
the two topmost τ -transitions are co-located but can be fired concurrently. Applying the
construction in the proof of Theorem 4.15 turns this net into the distributed net of Figure 1.

Likewise, up to ≈F any externally distributed net can be converted into a distributed net.

Proposition 4.17. [GGS08] For any externally distributed net N there is a distributed
net N ′ with N ′ ≈F N .

Proof. The same construction applies. The relation
{

(M,M∪P) |M is a reachable marking of N, P = {p[x] | [x] is a location}
}

is a bijection between the reachable markings of N ′ and N that preserves the step transition
relations between them. Here we use that the transitions in the associated LTS involve either
a multiset of concurrently firing visible transitions (that all reside on different locations and
thus do not share a preplace p[x]), or a single internal one. It follows that N ′ ≈F N .

Example 4.18. Figure 2 shows an externally distributed net; the (canonical) location
borders are dotted. It is not essentially distributed, because the transitions t and v are co-
located but can be fired concurrently, while ℓ(t) 6= τ . Applying the construction in the proof
of Proposition 4.17 turns this net into the step failures equivalent LSGA net of Figure 3.

The counterexample in Figure 2 shows that up to ≈∆
bSTb not all externally distributed nets

can be converted into distributed nets. Sequentialising the component with actions a, b and
τ (as happens in Figure 3) would disable the execution

a+
−→=⇒

c+
−→.

ON CHARACTERISING DISTRIBUTABILITY 17

p q

a t b u τ

v r

c

w

Figure 2: Externally distributed, but not convertible into a distributed net up to ≈∆
bSTb.

p q

at b u τ

v r

c

w

Figure 3: The LSGA net obtained from converting the externally distributed net of Figure 2.

5. Distributable Systems

We now consider Petri nets as specifications of concurrent systems and ask the question
which of those specifications can be implemented as distributed systems. This question can
be formalised as

Which Petri nets are semantically equivalent to distributed nets?

Of course the answer depends on the choice of a suitable semantic equivalence. Here we
will answer this question using the two equivalences discussed in the introduction. We will
give a precise characterisation of those nets for which we can find semantically equivalent
distributed nets. For the negative part of this characterisation, stating that certain nets are
not distributable, we will use step failures equivalence, which is one of the simplest and least
discriminating equivalences imaginable that abstracts from internal actions, but preserves
branching time, concurrency and divergence to some small degree.6 Giving up on any of
these latter three properties would make any Petri net distributable, but in a rather trivial
and unsatisfactory way:

• Every net can be converted into an essentially distributed net by refining every transition
a into the net segment τ a . This construc-

tion appears in [BD12] where it is criticised for putting “all relevant choice resolutions”
on one location. The construction does not introduce or remove concurrency or diver-
gence. So it preserves even causality respecting linear time equivalences like pomset trace
equivalence [GG01]. It does not preserve branching time equivalences, because a choice
between two visible transitions a and b in the original net is implemented by a choice
between two internal transitions preceding a and b. The resulting net is essentially dis-
tributed because all new τ -transitions can be placed on the same location, whereas all
other transitions get allocated a location of their own. Hence, using Theorem 4.15, it can
be converted into an equivalent distributed net.
• When working in interleaving semantics, any net can be converted into an equivalent dis-
tributed net by removing all concurrency between transitions. This can be accomplished

6In [GGS12] we used step readiness equivalence, a slightly more discriminating equivalence with roughly
the same properties. By moving to step failures equivalence we strengthen our result.

18 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

a t b u c v

τ

τ

τ

τ

Figure 4: A busy-wait implementation of the net in Figure 5, location borders dotted.

by adding a new, initially marked place, with an arc to and from every transition in the
net.
• When fully abstracting from divergence, even when respecting causality and branching
time, the net of Figure 5 is equivalent to the essentially distributed net of Figure 4, and
in fact it is not hard to see that this type of implementation is possible for any given net.
Yet, the implementation may diverge, as the nondeterministic choices might consistently
be decided in an unhelpful way. This argument is elaborated in Section 5.1 below. The
clause M X

τ
−→ in Definition 3.6 is strong enough to rule out this type of implementation,

even though our step failures semantics abstracts from other forms of divergence.

For the positive part, namely that all other nets are indeed distributable, we will use the
most discriminating equivalence for which our implementation works, namely branching ST-
bisimilarity with explicit divergence, which is finer than step failures equivalence. Hence
we will obtain the strongest possible results for both directions and it turns out that the
concept of distributability is fairly robust w.r.t. the choice of a suitable equivalence: any
equivalence notion between step failures equivalence and branching ST-bisimilarity with
explicit divergence will yield the same characterisation.

Definition 5.1. A Petri net N ′ is distributable up to an equivalence ≈ iff there exists a
distributed net N with N ≈ N ′.

Formally we give our characterisation of distributability by classifying which finitary plain
structural conflict nets can be implemented as distributed nets, and hence as LSGA nets.
In such implementations, we use invisible transitions. We study the concept “distributable”
for plain nets only, but in order to get the largest class possible we allow non-plain imple-
mentations, where a given transition may be split into multiple transitions carrying the
same label.

5.1. Characterising Distributability. It is well known that sometimes a global protocol
is necessary to implement synchronous interactions present in system specifications. In
particular, this may be needed for deciding choices in a coherent way, when these choices
require agreement of multiple components. The simple net in Figure 5 shows a typical
situation of this kind. Independent decisions of the two choices might lead to incorrect
system behaviour. If p and q both decide to send their respective tokens leftwards, a can
fire, yet the token from q gets stuck as b never receives a second token. Compared to the
correct semantics, a firing of c after a is missing. It can be argued that for this particular
net there exists no satisfactory distributed implementation that fully respects the reactive
behaviour of the original system: Transitions t and v are supposed to be concurrently

ON CHARACTERISING DISTRIBUTABILITY 19

executable (if we do not want to restrict performance of the system), and hence reside on
different locations. Thus at least one of them, say t, cannot be co-located with transition
u. However, both transitions are in conflict with u.

As we use nets as models of reactive systems, we allow the environment of a net to
influence decisions at runtime by blocking some of the possibilities. Equivalently we can
say it is the environment that fires transitions, and this can only happen for transitions
that are currently enabled in the net. If the net decides between t and u before the actual
execution of the chosen transition, the environment might change its mind in between,
leading to a state of deadlock. Therefore we work in a branching time semantics, in which
the option to perform t stays open until either t or u occurs. Hence the decision to fire u
can only be taken at the location of u, namely by firing u, and similarly for t. Assuming
that it takes time to propagate any message from one location to another, in no distributed
implementation of this net can t and u be simultaneously enabled, because in that case
we cannot exclude that both of them happen. Thus, the only possible implementation of
the choice between t and u is to alternate the right to fire between t and u, by sending
messages between them (cf. Figure 4). But if the environment only sporadically tries to fire
t or u it may repeatedly miss the opportunity to do so, leading to an infinite loop of control
messages sent back and forth, without either transition ever firing.

p q

a t b u c v

Figure 5: A fully reachable pure M.

Indeed such M-structures, representing interference between concurrency and choice,
turn out to play a crucial rôle for characterising distributability. To be specific, it is only
those Ms that are pure, i.e. don’t have extra arcs from their places to their transitions
besides those in Figure 5, and are fully reachable, i.e. for which there exists a reachable
marking enabling all three transitions at the same time.

Definition 5.2. Let N = (S, T, F,M0, ℓ) be a Petri net. N has a fully reachable pure M iff
∃t, u, v ∈ T.•t ∩ •u 6= ∅ ∧ •u ∩ •v 6= ∅ ∧ •t ∩ •v = ∅ ∧ ∃M ∈ [M0〉.

•t ∪ •u ∪ •v ≤M .

Note that Definition 5.2 implies that t 6= u, u 6= v and t 6= v.

Observation 5.3. A net with a fully reachable pure M is not distributed.

We now give an upper bound on the class of distributable nets by adapting a result from
[GGS08]: We show that fully reachable pure M’s that are present in a plain structural
conflict net are preserved under step failures equivalence. In [GGS08] we showed this for
step readiness equivalence.

Lemma 5.4. Let N = (S, T, F,M0, ℓ) be a plain structural conflict net. If N has a
fully reachable pure M, then there are σ ∈ Act∗ and a, b, c ∈ Act with a 6= c, such that
〈σ, {{a, c}}〉, 〈σ, {{b}}〉 /∈F(N) and 〈σ, {{a, b}, {b, c}}〉∈F(N). (It is implied that a 6=b 6=c.)

Proof. N has a fully reachable pure M, so there exist t, u, v ∈ T and M ∈ [M0〉 such that
•t ∩ •u 6= ∅ ∧ •u ∩ •v 6= ∅ ∧ •t ∩ •v = ∅ ∧ •t ∪ •u ∪ •v ≤ M . Let σ ∈ Act∗ such that

20 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

M0
σ

=⇒M . Let a := ℓ(t), b := ℓ(u) and c := ℓ(v), Then M
{a,c}
−−−→ and M

{b}
−→. Moreover,

using that N is a structural conflict net, M X
{a,b}
−−−→ and M X

{b,c}
−−→. Since N is a plain net,

M X
τ
−→, and there is no M ′ 6= M with M0

σ
=⇒ M ′. Hence 〈σ, {{a, c}}〉, 〈σ, {{b}}〉 /∈ F(N)

and 〈σ, {{a, b}, {b, c}}〉 ∈ F(N).

Lemma 5.5. Let N = (S, T, F,M0, ℓ) be a structural conflict net. If there are σ ∈ Act∗ and
a, b, c ∈ Act with a 6= c, such that 〈σ, {{a, c}}〉, 〈σ, {{b}}〉 /∈ F(N) and 〈σ, {{a, b}, {b, c}}〉 ∈
F(N), then N has a fully reachable pure M.

Proof. Let M ∈NS be the marking that gives rise to the step failure pair 〈σ, {{a, b}, {b, c}}〉,

i.e. M0
σ

=⇒ M , M X
{a,b}
−−−→ and M X

{b,c}
−−→. Since 〈σ, {a, c}〉 /∈ F(N), it must be that M

{a,c}
−−−→.

Likewise, M
{b}
−→.

As a 6= b 6= c 6= a there must exist three transitions t, u, v ∈ T with ℓ(t) = a ∧ ℓ(u) = b
∧ ℓ(v)= c and M [{t, v}〉∧M [{u}〉∧¬(M [{t, u}〉)∧¬(M [{u, v}〉). From M [{t, v}〉∧M [{u}〉
it follows that •t ∪ •u ∪ •v ≤ M and •t ∩ •v = ∅, using that N is a structural conflict net.
From ¬(M [{t, u}〉) then follows •t ∩ •u 6= ∅ and analogously for u and v. Hence N has a
fully reachable pure M.

Note that the lemmas above give a behavioural property that for plain structural conflict
nets is equivalent to having a fully reachable pure M.

Theorem 5.6. Let N be a plain structural conflict Petri net. If N has a fully reachable
pure M, then N is not distributable up to step failures equivalence.

Proof. Let N be a plain structural conflict net which has a fully reachable pure M. Let N ′

be a net which is step failures equivalent to N . By Lemma 5.4 and Lemma 5.5, also N ′

has a fully reachable pure M. By Observation 5.3, N ′ is not distributed. Thus N is not
distributable up to step failures equivalence.

Since ≈∆
bSTb is finer than ≈F , this result holds also for distributability up to ≈∆

bSTb (and

any equivalence between ≈F and ≈∆
bSTb).

In the following, we establish that this upper bound is tight, and hence a finitary plain
structural conflict net is distributable iff it has no fully reachable pure M. For this, it is
helpful to first introduce a more compact graphical notation for Petri nets as well as macros
for reversibility of transitions.

5.2. A compressed Petri net notation. To compress the graphical notation, we allow
universal quantifiers of the form ∀x.φ(x) to appear in the drawing (cf. Figures 6 and 7). A
quantifier replaces occurrences of x in place and transition identities with all concrete values
for which φ(x) holds, possibly creating a set of places, respectively transitions, instead of
the depicted single one. Accordingly, an arc of which only one end is replicated by a given

si

p a

tj
qj

∀i ∈ {0, 1} ∀j ∈ {2, 3}

Figure 6: A net with quantifiers.

p

s0

s1

a

t2

a

t3

q2

q3

Figure 7: The same net expanded.

ON CHARACTERISING DISTRIBUTABILITY 21

quantifier results in a fan of arcs, one for each replicated element. If both ends of an arc are
affected by the same quantifier, an arc is created between pairs of elements corresponding
to the same x, but not between elements created due to differing values of x.

5.3. Petri nets with reversible transitions. A Petri net with reversible transitions gen-
eralises the notion of a Petri net; its semantics is given by a translation to an ordinary
Petri net, thereby interpreting the reversible transitions as syntactic sugar for certain net
fragments. It is defined as a tuple (S, T,Ω, ı, F,M0, ℓ) with S a set of places, T a set of
(reversible) transitions, labelled by ℓ : T → Act

.

∪ {τ}, Ω a set of undo interfaces with the
relation ı ⊆ Ω× T linking interfaces to transitions, M0 ∈N

S an initial marking, and

F : (S × T × {in, early , late, out , far} → N)

the flow relation. When F (s, t, type) > 0 for type ∈ {in, early , late, out , far}, this is depicted by
drawing an arc from s to t, labelled with its arc weight F (s, t, type), of the form , ,

, , , respectively. For t ∈ T and type ∈ {in, early , late, out , far}, the multiset
of places ttype ∈NS is given by ttype(s) = F (s, t, type). When s∈ ttype for type ∈ {in, early , late},
the place s is called a preplace of t of type type; when s∈ ttype for type ∈ {out , far}, s is called
a postplace of t of type type. For each undo interface ω∈Ω and transition t with ı(ω, t) there
must be places undoω(t), resetω(t) and ackω(t) in S. A transition with a nonempty set of
interfaces is called reversible; the other (standard) transitions may have pre- and postplaces
of types in and out only—for these transitions tin = •t and tout = t•. In case Ω = ∅, the net
is just a normal Petri net.

A global state of a Petri net with reversible transitions is given by a marking M ∈NS ,
together with the state of each reversible transition “currently in progress”. Each transition
in the net can fire as usual. A reversible transition can moreover take back (some of) its
output tokens, and be undone and reset. (The use in our implementation will be that
every reversible transition that fires is undone and reset later.) When a transition t fires, it
consumes

∑

type∈{in, early , late} F (s, t, type) tokens from each of its preplaces s and produces
∑

type∈{out , far} F (s, t, type) tokens in each of its postplaces s. A reversible transition t that

has fired can start its reversal by consuming a token from undoω(t) for one of its interfaces
ω. Subsequently, it can take back the tokens from its postplaces of type far. After it has
retrieved all its output of type far, the transition is undone, thereby returning F (s, t, early)
tokens in each of its preplaces s of type early. Afterwards, by consuming a token from
resetω(t), for the same interface ω that started the undo-process, the transition terminates
its chain of activities by returning F (s, t, late) tokens in each of its late preplaces s. At that
occasion it also produces a token in ackω(t). Alternatively, two tokens in undoω(t) and
resetω(t) can annihilate each other without involving the transition t; this also produces a
token in ackω(t). The latter mechanism comes in action when trying to undo a transition
that has not yet fired.

Figure 8 shows the translation of a reversible transition t with ℓ(t)=a into an ordinary
net fragment. The arc weights on the green (or grey) arcs are inherited from the untrans-
lated net; the other arcs have weight 1. Formally, a net (S, T,Ω, ı, F,M0, ℓ) with reversible
transitions translates into the Petri net containing all places S, all standard transitions in
T , labelled according to ℓ, along with their pre- and postplaces, and furthermore all net
elements mentioned in Table 1, T← denoting the set of reversible transitions in T . The
initial marking is exactly M0.

22 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

(in)(late) (early)

undoω(t)

resetω(t)

ackω(t)(far)

(out)

a

t
ω

f

o

i l e

take(f, t)

τ

t · undo(f) took(f, t)

τ

t · undoω

τ t · undone

fired(t) ρ(t)

a

t · fire

τ

t · resetω

undoω(t)

ρω(t)

τt · elideω

ackω(t)

resetω(t)

∀f ∈ t far

∀o ∈ tout

∀i ∈ tin ∀l ∈ tlate ∀e ∈ tearly

∀ω. ı(ω, t)

Figure 8: A reversible transition and its macro expansion.

Transition at label Preplaces Postplaces for all

t · fire t ℓ(t) tin, tearly, tlate fired(t), tout, t far t ∈ T←

t · undoω t-undo τ undoω(t), fired(t) ρω(t), take(f, t) t ∈ T←, ı(ω, t), f ∈ t far

t · undo(f) f τ take(f, t), f took(f, t) t ∈ T←, f ∈ t far

t · undone t-undo τ took(f, t) ρ(t), tearly t ∈ T←, f ∈ t far

t · resetω t-undo τ resetω(t), ρω(t), ρ(t) tlate, ackω(t) t ∈ T←, ı(ω, t)
t · elideω t-undo τ undoω(t), resetω(t) ackω(t) t ∈ T←, ı(ω, t)

Table 1: Expansion of a Petri net with reversible transitions into a place/transition system.

A distribution of a Petri net with reversible transitions can be given as a function
D : S ∪ T → Loc. As in Condition (1) of Definition 4.5 we require that a transition and its
preplaces (of types in, early or late) reside on the same location. Additionally, for any given
transition t, all its undo-interface places undoω(t) and resetω(t) for all ω ∈ Ω must reside
on the same location—we refer to this location as t-undo. The second column of Table 1
indicates how such a distribution is translated under expansion of reversible transitions into
ordinary net fragments: The location of a reversible transition t is really the location of t·fire;
it should be the same as all preplaces of t. Furthermore, the transition t · undo(f) and its
preplace take(f, t) reside on the same location as the place f ∈ t far . All other net elements
that are part of the macro expansion of t, except for ackω(t), reside at the location t-undo.
The resulting distribution of the expanded net is now guaranteed to satisfy (1). Whether a

ON CHARACTERISING DISTRIBUTABILITY 23

Petri net with reversible translations is (essentially) distributed requires checking Condition
(2) of Definition 4.5 (or Condition (2′) of Definition 4.8) on its expansion.

5.4. The conflict replicating implementation. Now we establish that a finitary plain
structural conflict net that has no fully reachable pure M is distributable. We do this
by proposing the conflict replicating implementation of any such net, and show that this
implementation is always (a) essentially distributed, and (b) equivalent to the original net.
In order to get the strongest possible result, for (b) we use branching ST-bisimilarity with
explicit divergence.

To define the conflict replicating implementation of a net N ′ = (S′, T ′, F ′,M ′0, ℓ
′) we fix

an arbitrary well-ordering < on its transitions. We let b, c, g, h, i, j, k, l, u range over these
ordered transitions, and write

− i# j iff i 6= j ∧ •i ∩ •j 6= ∅ (transitions i and j are in conflict), and i
#
= j iff i# j ∨ i= j,

− i <# j iff i < j ∧ i# j, and i ≤# j iff i <# j ∨ i = j.

Figure 9 shows the conflict replicating implementation of N ′. It is presented as a Petri net

I(N ′) = (S, T, F,Ω, ı,M0, ℓ)

with reversible transitions. The set Ω of undo interfaces is T ′, and for i∈Ω we have ı(i, t) iff
t ∈ Ωi, where the sets of transitions Ωi ⊆ T are specified in Figure 9. The implementation
I(N ′) inherits the places of N ′ (i.e. S ⊇ S′), and we define M0↾S

′ to be M ′0. Given
this, Figure 9 is not merely an illustration of I(N ′)—it provides a complete and accurate
description of it, thereby defining the conflict replicating implementation of any net. In
interpreting this figure it is important to realise that net elements are completely determined
by their name (identity), and exist only once, even if they show up multiple times in the
figure. For instance, the place πh#j with h=2 and j=5 (when using natural numbers for the
transitions in T ′) is the same as the place πj#l with j=2 and l=5; it is a standard preplace
of executei2 (for all i ≤# 2), a standard postplace of fetchedi2, as well as a late preplace
of transfer25. Figure 10 depicts the same net after expanding the macros for reversible
transitions. An alternative description of the latter net appears in Table 2 on Page 39.

The rôle of the transitions distributep for p ∈ S′ is to distribute a token in p to copies
pj of p in the localities of all transitions j ∈ T ′ with p ∈ •j. In case j is enabled in N ′, the
transition initialisej will become enabled in I(N ′). These transitions put tokens in the places
prejk, which are preconditions for all transitions executejk, which model the execution of j
at the location of k. When two conflicting transitions h and j are both enabled in N ′, the
first steps initialiseh and initialisej towards their execution in I(N ′) can happen in parallel.
To prevent them from executing both, executejj (of j at its own location) is only possible
after transferhj , which disables executehh. This happens because transferhj takes the initially

present token from the place πh#j, which is needed to fire executehh.
The main idea behind the conflict replicating implementation is that a transition h∈T ′ is

primarily executed by a sequential component of its own, but when a conflicting transition
j gets enabled, the sequential component implementing j may “steal” the possibility to
execute h from the home component of h, by putting a token in transhj -in and getting
transferhj to fire, and then keep the options to do h and j open on the home component
of j until one of them occurs. To prevent h and j from stealing each other’s initiative,
which would result in deadlock, a global asymmetry is built in by ordering the transitions.
Transition j can steal the initiative from h only when h < j.

24 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

∀j ∈ T ′

∀p ∈ •j
∀h <# j

∀i ≤# j

∀k ≥# j

∀l ># j

∀q ∈ •i
∀c ∈ q•

∀r ∈ i •

∀t ∈ Ωi := {initialisec | c
#
= i} +

{transferbc | b <
c

#
= i}

∀u
#
= j

F ′(p, j)

F ′(i, r)

F ′(q, i)

p

τdistributep

pj

prejk

πj

τinitialisej

u

undou(initialisej)

resetu(initialisej)

acku(initialisej)

transhj -in
πh#j

τtransferhj
u

undou(transferhj)

resetu(transferhj)

acku(transferhj)

transhj -outpreij

πj#l

ℓ(i)

executeij

undoi(t)

fetchq,ci,j -in

qc τ fetchq,ci,j

fetchq,ci,j -out

τfetchedij

acki(t)reseti(t)

τfinalisei

r

Figure 9: The entire conflict replicating implementation, drawn with emphasis on the struc-
ture of the component of j; location borders dotted.

ON CHARACTERISING DISTRIBUTABILITY 25

∀j ∈ T ′

∀p ∈ •j
∀h <# j

∀i ≤# j

∀k ≥# j

∀l ># j

∀q ∈ •i
∀c ∈ q•

∀r ∈ i •

∀t ∈ Ωi := {initialisec | c
#
= i} +

{transferbc | b <
c

#
= i}

∀u
#
= j

F ′(p, j)

F ′(p, j)

F ′(i, r)

F ′(q, i)

p

τdistributep

pj

τinitialisej · fire
fired(initialisej)

τ initialisej · undou

take(prejk, initialisej)

take(transhj -in, initialisej)

τ

initialisej · undo(prejk)

τ

initialisej · undo(transhj -in)

took(prejk, initialisej)

took(transhj -in, initialisej)

τinitialisej · undone

ρ(initialisej)

τ initialisej · resetuτ initialisej · elideu

ρu(initialisej)

prejk

πj

undou(initialisej)
resetu(initialisej)

acku(initialisej)

transhj -in

πh#j

τtransferhj · fire

fired(transferhj)

τ transferhj · undou

take(transhj -out, transferhj)
τ

transferhj · undo(transhj -out)

took(transhj -out, transferhj)

τtransferhj · undone

ρ(transferhj)

τ transferhj · resetu
τ transferhj · elideu

ρu(transferhj)

undou(transferhj)

resetu(transferhj)

acku(transferhj)

transhj -out

preij
πj#l

ℓ(i)

executeij

undoi(t)

fetchq,ci,j -in

qc τ fetchq,ci,j

fetchq,ci,j -out

τfetchedij

acki(t)reseti(t)

τfinalisei

r

Figure 10: The entire conflict replicating implementation (with macros expanded).

26 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

In case j is also in conflict with a transition l, with j < l, the initiative to perform j
may subsequently be stolen by l. In that case either h and l are in conflict too—then l takes
responsibility for the execution of h as well—or h and l are concurrent—in that case h will
not be enabled, due to the absence of fully reachable pure Ms in N ′. The absence of fully
reachable pure Ms also guarantees that it cannot happen that two concurrent transitions j
and k both steal the initiative from an enabled transition h.

After the firing of executeij all tokens that were left behind in the process of carefully
orchestrating this firing will have to be cleaned up, in order to prepare the net for the next
activity in the same neighbourhood. This is the reason for the reversibility of the transitions
preparing the firing of executeij. Hence there is an undo interface for each transition i ∈ T ′,
cleaning up the mess made in preparation of firing executeij for some j ≥# i. Ωi is the set
of all transitions t that could possibly have contributed to this. For each of them the undo
interface i is activated, by executeij depositing a token in undoi(t). After all preparatory
transitions that have fired are undone, tokens appear in the places pc for all p∈

•i and c∈p•.
These are collected by fetchp,ci,j , after which all transitions in Ωi get a reset signal. Those

that have fired and were undone are reset, and those that never fired perform elidei(t). In
either case a token appears in acki(t). These are collected by finalisei, which finishes the
process of executing i by depositing tokens in its postplaces.

We allow multiple tokens to reside on the same place in the specification. To ensure
that this does never lead to the component implementing a transition j starting the firing
protocol again, even though it has not yet completed an earlier round, we introduce a place
πj which only holds a token while the component is idle.

By means of location boundaries, Figure 9 also displays a distribution of I(N ′). It has

• a location p for every place p ∈ S′, containing distributep and p;
• locations initialisej and executej for every j ∈ T ′—collectively referred to as “the location

of j”—the latter containing all transitions executeij for i ≤# j ∈ T ′;

• locations fetchedij for every i ≤# j ∈ T ′;

• locations initialisej-undo for every j ∈ T ′;

• locations transferhj -undo for every h <# j ∈ T ′;

• and locations finalisei for every i ∈ T ′.

A transition transferhj resides at location executeh, due to its common preplace πh#j with

executegh. Likewise, fetchp,ci,j resides at location initialisec. Provided N ′ is a finitary plain

structural conflict net without a fully reachable pure M, the proof of Theorem 7.11 will
show that this distribution makes I(N ′) an essentially distributed net.

The conflict replicating implementation is illustrated by means of the finitary plain
structural conflict net N ′ of Figure 11. The places and transitions a-q-b-s-c-x-d in this net
constitute a Long M: for each pair a-b, b-c and c-d of neighbouring transitions, as well as for
the pair a-d of extremal transitions, there exists a reachable marking enabling them both.
Moreover, neighbouring transitions in the long M are in conflict: a # b, b # c and c # d,
whereas the extremal transitions are concurrent: a ⌣ d. However, N ′ has no fully reachable
pure M: no M-shaped triple of transitions a-b-c, b-c-d or b-c-e is ever simultaneously enabled.

In [GGS08] we gave a simpler implementation, the transition-controlled choice imple-
mentation, that works for all finitary plain 1-safe Petri nets without such a long M. Hence
N ′ constitutes an example where that implementation does not apply, yet the conflict repli-
cating implementation does. In fact, when leaving out the z-e-branch it may be the simplest

ON CHARACTERISING DISTRIBUTABILITY 27

p

q
r

s

v

x

y z

a 1 b 2 c 3 d4 e 5

Figure 11: An example net.

example with these properties. We have added this branch to illustrate the situation where
three transitions are pairwise in conflict.

Figure 12 presents relevant parts of the conflict replicating implementation I(N ′) of
N ′. What corresponds to the ten places of N ′ can easily be discerned in I(N ′), but the
transitions of N ′ are replaced by more complicated net fragments. In Figure 12 we have
simplified the rendering of I(N ′) by simply just copying the five topmost transitions of
N ′, instead of displaying the net fragments replacing them. This simplification is possible
since the top half of N ′ is already distributed. To remind the reader of this, we left those
transitions unlabelled.7

In order to fix a well-ordering < on the remaining transitions, we named them after
the first five positive natural numbers. The ordered conflicts between those transitions
now are 1≤#2, 2≤#3, 3≤#4, 3≤#5 and 4≤#5. In Figure 12 we have skipped all places,
transitions and arcs involved in the cleanup of tokens after firing of a transition. In this
example the cleanup is not necessary, as no place of N ′ is visited twice. Thus, we displayed
only the non-reversible part of the transitions initialisej and transferhj—i.e. initialisej · fire and
transferhj · fire—as well as the transitions distributep and executeij. Likewise, we omitted the
outgoing arcs of executeij, the places πj, and those places that have arcs only to omitted
transitions. We leave it to the reader to check this net against the definition in Figure 9,
and to play the token game on this net, to see that it correctly implements N ′.

In Section 7 we will show, for any finitary plain structural conflict net N ′ without a fully
reachable pure M, that I(N ′) ≈∆

bSTb N ′, and that I(N ′) is essentially distributed. Hence
I(N ′) is an essentially distributed implementation of N ′. By Theorem 4.15 this implies
that N ′ is distributable up to ≈∆

bSTb. Together with Theorem 5.6 it follows that, for any

equivalence between ≈F and ≈∆
bSTb, a finitary plain structural conflict net is distributable

iff it has no fully reachable pure M.
Given the complexity of our construction, no techniques known to us were adequate for

performing the equivalence proof. We therefore had to develop an entirely new method for
rigorously proving the equivalence of two Petri nets up to ≈∆

bSTb, one of which known to be
plain. This method is presented in Section 6.

7While it is highly desirable in practical applications to use such simplifications to reduce the implemen-
tation size, we refrained from doing so in the formal definition of our implementation. It would have become
less regular and the proofs correspondingly longer.

2
8

R
.
V
A
N

G
L
A
B
B
E
E
K
,
U
.
G
O
L
T
Z
,
A
N
D

J
.-W

.
S
C
H
IC

K
E
-U

F
F
M
A
N
N

p q r s v x y z

τ distributep τ distributeq τ distributer τ distributes τ distributev τ distributex τ distributey τ distributez

p1 q1 q2 r2 s2 s3 v3 x3 x4 y4

x5

z5

τ initialise1 τ initialise2 τ initialise3 τ initialise4 τ initialise5

trans12-in trans23-in trans34-in trans35-in trans45-in

τ transfer12 τ transfer23 τ transfer34 τ transfer35 τ transfer45

trans12-out trans23-out trans34-out trans35-out trans45-outπ1#2 π2#3 π3#4 π3#5 π4#5

a execute11 aexecute12 b execute22 bexecute23 c execute33 cexecute34 d execute44 cexecute35 d execute45 e execute55

pre11 pre12 pre22 pre23 pre33 pre34 pre44 pre35 pre45 pre55

Figure 12: The (relevant parts of the) conflict replicating implementation of the net in Figure 11, location borders dotted.

ON CHARACTERISING DISTRIBUTABILITY 29

6. Proving Implementations Correct

This section presents a method for establishing the equivalence of two Petri nets, one of
which known to be plain, up to branching ST-bisimilarity with explicit divergence. It
appears as Theorem 6.8. First approximations of this method are presented in Lemmas 6.3
and 6.4. The progression from Lemma 6.3 to Lemma 6.4 and to Theorem 6.8 makes the
method more specific (so less general) and more powerful. By means of a simplification
a similar method can be obtained, also in three steps, for establishing the equivalence of
two Petri nets up to interleaving branching bisimilarity with explicit divergence. This is
elaborated at the end of this section.

We sometimes illustrate the results of this section in terms of the conflict replicating
implementation of a net defined in Section 5.4. However, the actual application of these
results to show the correctness of that implementation is presented in Section 7.

Definition 6.1. A labelled transition system (S,T,M0) is called deterministic if for all
reachable states M ∈ [M0〉 we have M X

τ
−→ and if M

a
−→ M′ and M

a
−→ M′′ for some

a ∈ Act then M′ = M′′.

Deterministic systems may not have reachable τ -transitions at all; this way, if M
σ

=⇒ M′

and M
σ

=⇒M′′ for some σ ∈ Act∗ then M′ = M′′. Note that the labelled transition system
associated to a plain Petri net is deterministic; the same applies to the ST-LTS, the split
LTS or the step LTS associated to such a net.

Lemma 6.2. Let (S1,T1,M01) and (S2,T2,M02) be two labelled transition systems, the
latter being deterministic. Suppose there is a relation B ⊆ S1 ×S2 such that

(a) M01BM02,
(b) if M1BM2 and M1

τ
−→M′1 then M′1BM2,

(c) if M1BM2 and M1
a
−→M′1 for some a ∈ Act then ∃M′2. M2

a
−→M′2 ∧M′1BM

′
2,

(d) if M1BM2 and M2
a
−→ for some a ∈ Act then either M1

a
−→ or M1

τ
−→

(e) and there is no infinite sequence M1
τ
−→M′1

τ
−→M′′1

τ
−→ · · · with M1BM2 for some

M2.

Then B is a branching bisimulation with explicit divergence, and the two LTSs are branching
bisimilar with explicit divergence.

Proof: It suffices to show that B satisfies Conditions 1–3 of Definition 3.2; the condition
on explicit divergence follows immediately from (e), using that a deterministic LTS admits
no divergence at all.

(1) By (a).
(2) In case α = τ this follows directly from (b), and otherwise from (c). In both cases

M
†
2 := M2 and when α = τ also M′2 := M2.

(3) Suppose M1BM2 and M2
α
−→M′2. Since (S2,T2,M02) is deterministic, α = a ∈ Act.

By (d) we have either M1
a
−→ M1

1 or M1
τ
−→ M1

1 for some M1
1 ∈ S1. In the latter

case (b) yields M1
1BM2, and using (d) again, either M1

1
a
−→ M2

1 or M1
1

τ
−→ M2

1 for
some M2

1 ∈ S1. Repeating this argument, if the choice between a and τ is made k
times in favour of τ (with k ≥ 0), we obtain Mk

1BM2 (where M0
1 := M1) and either

Mk
1

a
−→ Mk+1

1 or Mk
1

τ
−→ Mk+1

1 . By (e), at some point the choice must be made in

favour of a, say at Mk
1 . Thus M1 =⇒ Mk

1
a
−→ Mk+1

1 , with Mk
1BM2. We take M

†
1

and M′1 from Definition 3.2 to be Mk
1 and M

k+1
1 . It remains to show that Mk+1

1 BM′2.

30 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

By (c) there is an M′′2 ∈ S2 with M2
a
−→ M′′2 and M

k+1
1 BM′′2. Since (S2,T2,M02) is

deterministic, M′2 = M′′2 .

Lemma 6.3. Let N = (S, T, F,M0, ℓ) and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be two nets, N ′ being

plain. Suppose there is a relation B ⊆ (NS ×NT)× (NS′

×NT ′

) such that

(a) (M0, ∅)B (M
′
0, ∅),

(b) if (M1, U1)B (M
′
1, U

′
1) and (M1, U1)

τ
−→ (M2, U2) then (M2, U2)B (M

′
1, U

′
1),

(c) if (M1, U1)B (M
′
1, U

′
1) and (M1, U1)

η
−→ (M2, U2) for some η ∈ Act±

then ∃(M ′2, U
′
2). (M

′
1, U

′
1)

η
−→ (M ′2, U

′
2) ∧ (M2, U2)B (M

′
2, U

′
2),

(d) if (M1, U1)B (M
′
1, U

′
1) and (M ′1, U

′
1)

η
−→ with η ∈ Act±

then either (M1, U1)
η
−→ or (M1, U1)

τ
−→

(e) and there is no infinite sequence (M,U)
τ
−→ (M1, U1)

τ
−→ (M2, U2)

τ
−→ · · ·

with (M,U)B (M ′, U ′) for some (M ′, U ′).

Then B is a branching split bisimulation with explicit divergence, and N ≈∆
bSTb N

′.

Proof. That N and N ′ are branching split bisimilar with explicit divergence follows directly
from Lemma 6.2 by taking (S1,T1,M01) and (S2,T2,M02) to be the split LTSs associated
to N and N ′ respectively. Here we use that the split LTS associated to a plain net is
deterministic. The final conclusion follows by Proposition 3.15.

Lemma 6.3 provides a method for proving N ≈∆
bSTb N

′ that can be more efficient than di-
rectly checking the definition. In particular, the intermediate states M† and the sequence
of τ -transitions =⇒ from Definition 3.2 do not occur in Lemma 6.2, and hence not in
Lemma 6.3. Moreover, in Condition (d) one no longer has to match the targets of corre-
sponding transitions. Lemma 6.4 below, when applicable, provides an even more efficient
method: it is no longer necessary to specify the branching split bisimulation B , and the
targets have disappeared from the transitions in Condition 2c as well. Instead, we have
acquired Condition 1, but this is a structural property, which is relatively easy to check.

Lemma 6.4. Let N = (S, T, F,M0, ℓ) be a net and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be a plain net

with S′ ⊆ S and M ′0 = M0 ↾ S
′. Suppose:

(1) ∀t ∈ T, ℓ(t) 6= τ. ∃t′ ∈ T ′, ℓ(t′) = ℓ(t). ∃G ∈F N
T , ℓ(G) ≡ ∅. Jt′K = Jt+GK.

(2) For any G ∈F Z

T with ℓ(G) ≡ ∅, M ′ ∈NS′

, U ′ ∈NT ′

and U ∈ NT with ℓ′(U ′) =
ℓ(U), M ′ + •U ′ ∈ [M ′0〉N ′ and M := M ′ + •U ′ + (M0 −M ′0) + JGK − •U ∈ NS with
M + •U ∈ [M0〉N , it holds that:
(a) there is no infinite sequence M

τ
−→M1

τ
−→M2

τ
−→ · · ·

(b) if M ′
a
−→ with a ∈ Act then M

a
−→ or M

τ
−→

(c) and if M
a
−→ with a ∈Act then M ′

a
−→.

Then N ≈∆
bSTb N

′.

Proof:8 Define B ⊆ (NS ×NT) × (NS′

×NT ′

) by (M,U)B (M ′, U ′) :⇔ ℓ′(U ′) = ℓ(U) ∧
M ′+•U ′∈ [M ′0〉N ′ ∧∃G ∈F Z

T . ℓ(G) ≡ ∅∧M + •U = M ′+ •U ′+(M0−M
′
0)+ JGK ∈ [M0〉N .

It suffices to show that B satisfies Conditions (a)–(e) of Lemma 6.3.

(a) Take G = ∅.
(b) Suppose (M1, U1)B (M

′
1, U

′
1) and (M1, U1)

τ
−→ (M2, U2). Then ℓ′(U ′1)=ℓ(U1)∧M

′
1+
•U ′1∈

[M ′0〉N ′∧∃G ∈F Z
T . ℓ(G)≡∅∧M1 = M ′1+

•U ′1+(M0−M
′
0)+JGK−•U1∧M1+

•U ∈ [M0〉N
and moreover M1

τ
−→M2 ∧ U2 = U1. So M1[t〉M2 for some t ∈ T with ℓ(t) = τ . Hence

8For didactic reason it may be preferable to skip ahead and read the (simpler) proof of Lemma 6.10 first.

ON CHARACTERISING DISTRIBUTABILITY 31

M2 = M1+ JtK = M ′1+
•U ′1+(M0−M

′
0)+ JG+ tK−•U1. Since (M1+

•U1)[t〉(M2 +
•U1),

we have M2 +
•U1 ∈ [M0〉N . Since also ℓ(G+ t) ≡ ∅ it follows that (M2, U1)B (M

′
1, U

′
1).

(c) Suppose (M1, U1)B (M
′
1, U

′
1) and (M1, U1)

η
−→ (M2, U2), with η ∈ Act±. Then ℓ′(U ′1) =

ℓ(U1), M
′
1 +
•U ′1 ∈ [M ′0〉N ′ and

∃G ∈F Z
T . ℓ(G)≡ ∅ ∧M1 +

•U1 = M ′1 +
•
U ′1 + (M0 −M ′0) + JGK ∈ [M0〉N . (6.1)

First suppose η = a+. Then ∃t∈T. ℓ(t)=a∧M1[t〉∧M2 = M1−
•t∧U2 = U1+{t}. Using

that M1
a
−→ with a ∈ Act, by Condition 2c we have M ′1

a
−→, i.e. M ′1[t

′〉 for some t′ ∈ T
with ℓ′(t′) = a. Let M ′2 := M ′1 −

•t and U ′2 := U ′1 + {t
′}. Then (M ′1, U

′
1)

a+
−→ (M ′2, U

′
2).

Moreover, ℓ(U2) = ℓ(U ′2), M
′
2 +

•U ′2 = M ′1 +
•U ′1 ∈ [M ′0〉N ′ and M2 +

•U2 = M1 +
•U1.

In combination with (6.1) this yields

M2 +
•U2 = M1 +

•U1 = M ′1 +
•
U ′1 + (M0−M

′
0) + JGK = M ′2 +

•
U ′2 + (M0−M

′
0) + JGK,

so (M2, U2)B (M
′
2, U

′
2).

Now suppose η = a−. Then ∃t ∈ U1. ℓ(t) = a ∧ U2 = U1−{t} ∧M2 = M1 + t•. Since
ℓ′(U ′1) = ℓ(U1) there is a t′ ∈U ′1 with ℓ(t′) = a. Let M ′2 := M ′1 + t′• and U ′2 := U ′1 − {t

′}.
Then (M ′1, U

′
1)

a−
−→ (M ′2, U

′
2). By construction, ℓ(U2) = ℓ(U ′2). Moreover, M2 +

•U2 =
M1 + t• + •U1 − •t = (M1 +

•U1) + JtK, and likewise

M ′2 +
•
U ′2 = (M ′1 +

•
U ′1) + Jt′K (6.2)

so (M ′1 +
•U ′1)[t

′〉(M ′2 +
•U ′2). Since M ′1 +

•U ′1 ∈ [M ′0〉N ′ , this yields M ′2 +
•U ′2 ∈ [M

′
0〉N ′ .

Moreover, M2 +
•U2 = M1 + t• +•U1 −

•t = M1 +
•U1 + JtK ∈ [M0〉N . Furthermore,

combining (6.1) and (6.2) gives

∃G ∈F Z
T . ℓ(G)≡ ∅ ∧M2 +

•U2 − JtK = M ′2 +
•
U ′2 − Jt′K + (M0 −M ′0) + JGK. (6.3)

By Condition 1 of Lemma 6.4, ∃t′′ ∈ T ′, ℓ(t′′) = ℓ(t). ∃Gt ∈F N
T , ℓ(Gt) ≡ ∅. JtK =

Jt′′−GtK. Since N
′ is a plain net, it has only one transition t† with ℓ(t†) = a, so t′′= t′.

Substitution of Jt′ −GtK for JtK in (6.3) yields

∃G ∈F Z
T . ℓ(G)≡ ∅ ∧M2 +

•U2 = M ′2 +
•
U ′2 + (M0 −M ′0) + JG−GtK.

Since ℓ(G−Gt) ≡ ∅ we obtain (M2, U2)B (M
′
2, U

′
2).

(d) Follows directly from Condition 2b and Definition 3.9.
(e) Follows directly from Condition 2a and Definition 3.9.

To illustrate the use of Lemmas 6.10 and 6.4, let N ′ be a plain net and N be its conflict
replicating implementation, depicted in Figure 10. Condition (1) says that for any visible
transition t in the implementation—this must be executeij for some i and j—there must
be a transition t′ in N ′ with the same label—this must be i—such that the same token
replacement Jt′K that results from firing t′ in the net N ′ can also achieved by t in N together
with a multiset G of internal transitions of N . For this to even make sense it is necessary
that S′ ⊆ S, so that Jt′K can just as well be seen as a token replacement of N . This condition
can be fulfilled by taking G to contain distributep for every preplace p of i, fetchp,ci,j for every
preplace p of i and every c ∈ p•, fetchedij, u · elidei for u ∈ Ωi, and finalisei.

In the proof of Lemma 6.10/6.4, a branching bisimulation is constructed between the
markings of N ′ and N , by relating any reachable marking M ′ of N ′ with the corresponding
marking M ′+(M0−M

′
0) of N ; the latter is the marking M ′ seen as a marking of N , together

with those places in S \S′ that are marked initially (or by default). In addition, M ′ is also
related to markings obtained from M ′ + (M0−M

′
0) by adding or subtracting the token

replacement due to firing some internal transitions of N . For instance, compared to the

32 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

state of N given by the marking M ′+(M0−M
′
0) it could be that finalisei has not yet fired—

so that acki(t) is marked for all t ∈ Ωi instead of the postplaces r of i—and that distributep
has already fired for some place p. This gives rise to the marking M ′ + (M0−M

′
0) + JGK

being related to M ′, with G = −{finalisei}+{distributep}. To show that the relation really is
a branching bisimulation with explicit divergence it suffices to check the conditions (a)–(c).
That these are enough to obtain the stronger conditions (a)–(e) of Lemma 6.9/6.3 follows
with help of the new condition (1).

In the proof of Lemma 6.4 the bisimulation constructed in the proof of Lemma 6.10 is
strengthened to a split bisimulation by taking account of the sets U ′ and U of transitions
currently firing in N ′ and N . Here we need to require that U ′ and U carry the same
multiset of labels. Moreover, the preplaces of U ′ and U need to be added to M ′ and M
when determining that they are reachable markings, and in relating these markings to each
other; for these purposes we thus use the markings we would have had before starting the
transitions that are currently firing. On the other hand, M ′ and M themselves need to be
markings (i.e. put a nonnegative number of tokens in each place), and in conditions (a)–(c)
only those transitions matter that can be fired from M ′ and M themselves—without the
preplaces of U ′ and U .

In Lemma 6.4 a relation is explored between markings M̄ and M̄ + JHK (where M̄ is
M ′ +•U ′ + (M0 −M ′0) of Lemma 6.4, H := G, and M̄ + JHK is M +•U of Lemma 6.4). In
such a case, we can think of M̄ as an “original marking”, and of M̄ + JHK as a modification
of this marking by the token replacement JHK. The next lemma provides a method to trace
certain places s marked by M̄ + JHK (or transitions t that are enabled under M̄ + JHK)
back to places that must have been marked by M̄ before taking into account the token
replacement JHK. Such places are called faithful origins of s (or t). In tracking the faithful
origins of places and transitions, we assume that the places marked by M̄ are taken from a
set S+ and the transitions in H from a set T+. In Lemma 6.7 we furthermore assume that
the flow relation restricted to S ∪ T+ is acyclic. We will need this lemma in proving the
correctness of our final method of proving N ≈∆

bSTb N
′.

Definition 6.5. Let N = (S, T, F,M0, ℓ) be a Petri net, T+ ⊆ T a set of transitions and
S+ ⊆ S a set of places.

• A path in N is an alternating sequence π = x0x1x2 · · · xn ∈ (S ∪ T)∗ of places and
transitions, such that F (xi, xi+1) > 0 for 0≤ i < n. The arc weight F (π) of such a path
is the product Πn−1

0 F (xi, xi+1).
• A place s ∈ S is called faithful w.r.t. T+ and S+ iff |{s} ∩ S+|+

∑

t∈T+
F (t, s) = 1.

• A path x0x1x2 · · · xn ∈ (S ∪T)∗ from x0 to xn is faithful w.r.t. T+ and S+ iff all interme-
diate nodes xi for 0 ≤ i < n are either transitions in T+ or faithful places w.r.t. T+ and
S+.
• For x ∈ S ∪ T , the infinitary multiset ∗x ∈ (N ∪ {∞})S+ of faithful origins of x is given
by ∗x(s) = sup{F (π) | π is a faithful path from s ∈ S+ to x}. (So ∗x(s) = 0 if no such
path exists.)

Suppose a marking M is reachable from a marking M̄ ∈ NS+ by firing transitions from T+

only. So M = M̄ + JHK for some H ∈F N
T+ . Then, if a faithful place s bears a token under

M—i.e. M(s) > 0—this token has a unique source: if s ∈ S+ it must stem from M̄ and
otherwise it must be produced by the unique transition t ∈ T+ with F (t, s) = 1.

Now consider a period in the evolution of the net N that starts with the marking M̄ ,
and during which only transitions from T+ fire. Suppose π = x0x1x2 · · · xn is a faithful

ON CHARACTERISING DISTRIBUTABILITY 33

path from a place x0 ∈ S+ to a either a faithful place xn that gets marked at some point
during this period or a transition xn that fires during (or right after) this period. In that
case a token, left on x0 by the marking M̄ , must have travelled along that path from x0 to
xn—where a token is understood to visit a transition when that transition fires. Namely,
if xi+1 is a transition that fired at some point, then its (faithful) preplace xi must have
been marked right beforehand; and if a faithful place xj+i was marked at some point, then
xj+i /∈ S+ and the token in xj+i must have been produced by the transition xi ∈ T+.

Note that F (π) is the product of all arc weights in the path on arcs from places to
transitions; for all the weights on arcs from transitions in T+ to faithful places are 1. Taking
arc weights into account, for every token in xn as many as F (π) token must have started
in x0. Namely, for a transition xi+1 to fire once, F (xi, xi+1) tokens must have come from
place xi, and for each token in a faithful place xj+1, the transition xj must have fired once.

In a net without arc weights, ∗x is always a set, namely the set of places s in S+ from
which the flow relation of the net admits a path to x that passes only through faithful
places and transitions from T+ (with the possible exception of x itself). For nets with arc
weights, the underlying set of ∗x is the same, and the multiplicity of s ∈ ∗x is obtained by
multiplying all arc weights on the qualifying path from s to x; in case of multiple such paths,
we take the upper bound over all such paths (which could yield the value ∞). It follows
from the analysis above that if a faithful place x gets marked, or a transition x enabled,
during a period as described above, then at least ∗x(s) tokens must have been present in s
at the beginning of this period. Lemma 6.7 formalises this analysis by comparing a marking
M̄+ JHK that marks or enables x (possibly multiple times) with the marking M̄ that marks
the faithful origins ∗x of x. Here H ∈F N

T+ is the multiset of transitions whose firing
converts M̄ into M̄+ JHK. However, Lemma 6.7 does not require that this multiset actually
can be fired in any particular order. To enable that generalisation, it must assume that
F ↾ (S ∪ T+) is acyclic.

For k 6= 0, we have k · ∗x(s) = sup{k · F (π) | π is a faithful path from s ∈ S+ to x}.
In order to also have this equality for k = 0 and ∗x(s) = ∞ we define 0 · ∞ := 0 in this
context.

Observation 6.6. Let (S, T, F,M0, ℓ) be a Petri net, T+ ⊆ T a set of transitions and
S+ ⊆ S a set of places. For faithful places s and transitions t ∈ T we have

∗s =

{

{s} if s ∈ S+
∗t if t ∈ T+ ∧ F (t, s) = 1

∗t =
⋃

{F (s, t) · ∗s | s ∈ •t ∧ s faithful}.

Lemma 6.7. Let (S, T, F,M0, ℓ) be a Petri net, T+ ⊆ T a set of transitions such that
F ↾ (S ∪ T+) is acyclic, and S+ ⊆ S a set of places. Let M̄ ∈ NS+ and H ∈F N

T+ , such
that M̄ + JHK ∈ NS (i.e. places occur only non-negatively in M̄ + JHK). Then

(a) for any faithful place s w.r.t. T+ and S+ we have (M̄ + JHK)(s) · ∗s ≤ M̄ ;
(b) for any k ∈ N, and any transition t with (M̄ + JHK)[k · {t}〉, we have k · ∗t ≤ M̄ .

Proof. We apply induction on |H|. In the base case, H = ∅, which formally is included
in the induction step, (a) follows directly from the assumption that M̄ ∈ NS+ and the
observation that ∗s = {s}.

(a). When (M̄ + JHK)(s) = 0 it trivially follows that (M̄ + JHK)(s) · ∗s ≤ M̄ . So suppose
(M̄ + JHK)(s) > 0. Then either s ∈ S+ or there is a unique t ∈ T+ with H(t) > 0 and
F (t, s) = 1. In the first case, using that s ∈ u• for no u ∈ T+, we have (M̄+JHK)(s) ≤ M̄(s),
so (M̄ + JHK)(s) · ∗s ≤ M̄(s) · {s} ≤ M̄ . In the latter case, we have (M̄ + JHK)(s) ≤

34 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

M̄(s) +
∑

u∈T+
H(u) · F (u, s) = M̄(s) +H(t) = H(t) and ∗s = ∗t. Thus:

(M̄ + JHK)(s) · ∗s ≤ H(t) · ∗t . (6.4)

Let U := {u ∈ T+ | H(u) > 0 ∧ uF+t} be the set of transitions occurring in H from
which the flow relation of the net offers a non-empty path to t. As F ↾ (S ∪ T+) is acyclic,
t /∈ U , so H ↾ U < H. Let s′ be any place with s′ ∈ •u for some transition u ∈ U .
Then, by construction of U , it cannot happen that s′ ∈ v• for some transition v /∈ U with
H(v) > 0. Hence (M̄ + JH ↾UK)(s′) ≥ (M̄ + JHK)(s′) ≥ 0. Moreover, for any other place
s′′ we have •(H ↾ U)(s′′) = 0 and thus (M̄ + JH ↾ UK)(s′′) ≥ M̄(s′′) ≥ 0. It follows that
M̄ + JH ↾UK ∈ NS .

For each s′′′ ∈ •t we have (H −H ↾U)•(s′′′) = 0 and •(H −H ↾U)(s′′′) ≥ H(t) · •t(s′′′)
and therefore 0 ≤ (M̄ + JHK)(s′′′) ≤ (M̄ + JH ↾UK)(s′′′) − H(t) · •t(s′′′). For this reason,
H(t) · •t ≤ M̄ + JH ↾ UK. It follows that (M̄ + JH ↾ UK)[H(t) · {t}〉. Thus, by (6.4) and
induction, (M̄ + JHK)(s) · ∗s ≤ H(t) · ∗t ≤ M̄ .

(b). Let (M̄ + JHK)[k · {t}〉. For any faithful s ∈ •t we have (M̄ + JHK)(s) ≥ k ·F (s, t), and
thus, using (a),

k · F (s, t) · ∗s ≤ (M̄ + JHK)(s) · ∗s ≤ M̄ .

Therefore, by Observation 6.6, k · ∗t =
⋃

{k · F (s, t) · ∗s | s ∈ •t ∧ s faithful} ≤ M̄ .

As a (forthcoming) application of Lemma 6.7—in fact the only one we’ll need in this paper—
consider the branching split bisimulation with explicit divergence between a net N ′ and
its conflict replicating implementation N that is constructed according to the proof of
Lemma 6.4. When a split marking (M ′, U ′) is related to (M,U), then M+•U = M ′+•U ′+
(M0−M

′
0) + JGK for a signed multiset G of internal transitions of N . Furthermore suppose

that G is a true multiset over the set of transitions T+, consisting of distributep, initialisej ·fire
and transferhj · fire only (for arbitrary p, j and h). Take M̄ := M ′ + •U ′ + (M0−M

′
0),

H := G and thus M + •U = M̄ + JHK. Let S+ := S′ ∪ {s ∈ S | (M0−M
′
0)(s) > 0}. Then

p distributep pi initialisei · fire preij executeij is a faithful path from p to executeij . The arc

weight of this path is F ′(p, i). So ∗executeij ≥ F ′(p, i). Thus if executeij is enabled under
M + •U then M̄ must place at least F ′(p, i) tokens in the place p. As this reasoning applies
to every preplace p of i, it follows that i is enabled under M ′ + •U ′.

The following theorem is the main result of this section. It presents a method for proving
N ≈∆

bSTb N
′ for N a net and N ′ a plain net. Its main advantage w.r.t. directly using the

definition, or w.r.t. application of Lemma 6.3 or 6.4, is the replacement of requirements on
the dynamic behaviour of nets by structural requirements. Such requirements are typically
easier to check. Replacing the requirement “M+•U ∈ [M0〉N” in Condition 5 by “M+•U ∈
N

S” would have yielded an even more structural version of this theorem; however, that
version turned out not to be strong enough for the verification task performed in Section 7.

Theorem 6.8. Let N = (S, T, F,M0, ℓ) be a net and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be a plain net

with S′ ⊆ S and M ′0 = M0 ↾ S′. Suppose there exist sets T+ ⊆ T and T− ⊆ T and a class

NF ⊆ ZT , such that

(1) F ↾ (S ∪ T+) is acyclic.
(2) F ↾ (S ∪ T−) is acyclic.
(3) ∀t∈ T, ℓ(t) 6= τ. ∃t′ ∈ T ′, ℓ(t′) = ℓ(t).

(•t′ ≤ ∗t ∧ ∃G ∈F N
T , ℓ(G) ≡ ∅. Jt′K = Jt+GK

)

.
Here ∗t is the multiset of faithful origins of t w.r.t. T+ and S′ ∪ {s ∈ S |M0(s) > 0}.

ON CHARACTERISING DISTRIBUTABILITY 35

(4) There exists a function f : T → N with f(t) > 0 for all t ∈ T , extended to ZT as in
Definition 2.1, such that for each G ∈F Z

T with ℓ(G) ≡ ∅ there is an H ∈F NF with
ℓ(H) ≡ ∅, JHK = JGK and f(H) = f(G).

(5) For every M ′ ∈ NS′

, U ′ ∈ NT ′

and U ∈ NT with ℓ(U) = ℓ′(U ′) and M ′+ •U ′ ∈ [M ′0〉N ′ ,
there is an HM ′,U ∈F N

T+ with ℓ(HM ′,U) ≡ ∅, such that for each H ∈F NF with M :=

M ′ + •U ′ + (M0 −M ′0) + JHK− •U ∈ NS and M + •U ∈ [M0〉N :

(a) MM ′,U := M ′ + •U ′ + (M0 −M ′0) + JHM ′,UK− •U ∈ NS,
(b) if M ′

a
−→ with a ∈ Act then MM ′,U

a
−→,

(c) H ≤ HM ′,U .
(d) if H(u) < 0 then u ∈ T−,
(e) if H(u) < 0 and H(t) > 0 then •u ∩ •t = ∅,
(f) if H(u) < 0 and (M +•U)[t〉 with ℓ(t) 6= τ then •u ∩ •t = ∅,
(g) if (M +•U)[{t}+{u}〉 and and t′, u′ ∈ T ′ with ℓ′(t′) = ℓ(t) and ℓ′(u′) = ℓ(u), then

•t′ ∩ •u′ = ∅.

Then N ≈∆
bSTb N

′.

Proof: It suffices to show that Condition 2 of Lemma 6.4 holds (as Condition 1 of Lemma 6.4
is part of Condition 3 above). So let G ∈F Z

T with ℓ(G) ≡ ∅, M ′ ∈NS′

, U ′ ∈NT ′

and
U ∈NT with ℓ′(U ′)= ℓ(U), M ′+•U ′ ∈ [M ′0〉N ′ , M := M ′+•U ′+(M0−M

′
0)+JGK−•U ∈NS and

M + •U ∈ [M0〉N .

(a) Suppose M
τ
−→ M1

τ
−→ M2

τ
−→ · · · . Then there are transitions ti ∈ T with ℓ(ti) = τ ,

for all i≥ 1, such that M [t1〉M1[t2〉M2[t3〉 · · · . As also (M +•U)[t1〉(M1 +
•U)[t2〉(M2 +

•U)[t3〉 · · · , it follows that (Mi+
•U)∈ [M0〉N for all i ≥ 1. Let G0 := G and for all i ≥ 1

let Gi := Gi−1 + {ti}. Then ℓ(Gi) ≡ ∅ and Mi = M ′ +•U ′ + (M0 −M ′0) + JGiK −
•U .

Moreover, f(Gi) = f(Gi−1) + f(ti) > f(Gi−1). For all i ≥ 0, using Condition 4, let
Hi ∈F NF be so that JHiK = JGiK and f(Hi) = f(Gi). Then Mi = M ′ +•U ′ + (M0 −
M ′0) + JHiK −

•U and f(H0) < f(H1) < f(H2) < · · · . However, from Condition 5c we
get f(Hi) ≤ f(HM ′) for all i ≥ 0. The sequence M

τ
−→ M1

τ
−→ M2

τ
−→ · · · therefore

must be finite.
(b) Now suppose M ′

a
−→ with a ∈ Act. By Condition 4 above there exists an H ∈F NF

such that ℓ(H) ≡ ∅ and JHK = JGK, and hence M = M ′+•U ′+ (M0−M ′0) + JHK−•U .
Let H− := {u ∈ T | H(u) < 0}.
• First suppose H− 6= ∅. By Condition 5d, H− ⊆ T−. By Condition 2, the relation
<−:= (F ↾ (S ∪ T−))

+ is a partial order on S ∪ T−, and hence on H−. Let u be a
minimal transition in H− w.r.t. <−. By definition, for all s ∈ S,

M(s) = M ′(s) +
•
U ′(s) + (M0 −M ′0)(s) +

∑

t∈T

H(t) · F (t, s) +
∑

t∈T

−H(t) · F (s, t) +
∑

t∈U

−U(t) · F (t, s). (6.5)

AsM ′0 = M0 ↾ S
′, we haveM ′0 ≤M0. Hence the first three summands in this equation

are always nonnegative. Now assume s ∈ •u. Since u is minimal w.r.t. <−, there is
no t ∈ T with H(t) < 0 and F (t, s) 6= 0. Hence also all summands H(t) · F (t, s) are
nonnegative. By Condition 5e, there is no t ∈ T with H(t) > 0 and F (s, t) 6= 0, so all
summands −H(t) ·F (s, t) are nonnegative as well. By Condition 5f, there is no t ∈ T
with U(t) > 0 and F (s, t) 6= 0, for this would imply that ℓ(t) 6= τ and (M +•U)[t〉,
so no summands in (6.5) are negative. Thus 0 ≤ −H(u) · F (s, u) ≤ M(s). Since

36 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

H(u) ≤ −1, this implies M(s) ≥ F (s, u). Hence u is enabled in M . As ℓ(u) = τ , we
have M

τ
−→.

• Next suppose H−= ∅ but H 6= HM ′,U . Let H⌣ := {u ∈ T | HM ′,U(u) −H(u) > 0}.
Then H⌣ 6= ∅ by Condition 5c. Since HM ′,U ∈F N

T+, H⌣ ⊆ T+. By Condition 1,
<+:= (F ↾ (S ∪ T+))

+ is a partial order on S ∪ T+, and hence on H⌣. Let u be a
minimal transition in H⌣ w.r.t. <+. We have M = M ′+•U ′+(M0−M ′0)+ JHM ′,U +
(H −HM ′,U)K −

•U = MM ′,U + JH −HM ′,UK. Hence, for all s ∈ S,

M(s) = MM ′,U (s) +
∑

t∈T

(H −HM ′,U)(t) · F (t, s) +
∑

t∈T

−(H −HM ′,U)(t) · F (s, t) . (6.6)

By Condition 5a, MM ′,U ∈ N
S . By Condition 5c, H − HM ′,U ≤ 0. For s ∈ •u

there is moreover no t ∈ H⌣ with s ∈ t•, so no t ∈ T with (H − HM ′,U)(t) < 0
and F (t, s) 6= 0. Hence no summands in (6.6) are negative. It thereby follows that
0 ≤ −(H−MM ′,U)(u) · F (s, t) ≤ M(s). Since (H−HM ′,U)(u) ≤ −1, this implies
M(s) ≥ F (s, u). Hence u is enabled in M . As ℓ(u) = τ , we have M

τ
−→.

• Finally suppose H = HM ′,U . Then M = MM ′,U and M
a
−→ follows by Condition 5b.

(c) Next suppose M
a
−→ with a ∈ Act. Then there is a t ∈ T with ℓ(t) = a 6= τ and

M [t〉. So (M + •U)[t〉. We will first show that (M ′ + •U ′)
a
−→. By Condition 4

there exists an H0 ∈F NF ⊆ Z

T such that ℓ(H0) ≡ ∅ and JH0K = JGK, and hence
M +•U = M ′ +•U ′ + (M0 −M ′0) + JH0K ∈ [M0〉N . For our first step, it suffices to
show that whenever H ∈F NF with MH := M ′ +•U ′ + (M0 −M ′0) + JHK ∈ [M0〉 and
MH [t〉, then (M ′ +•U ′)

a
−→. We show this by induction on f(HM ′,U − H), observing

that f(HM ′,U −H) ∈ N by Conditions 5c (with empty U) and 4.
We consider two cases, depending on the emptiness of H− := {u ∈ T | H(u) < 0}.
First assume H−= ∅. Then H ∈F N

T. By Condition 5c (with empty U) we even have
H ∈F N

T+. Let ∗t denote the multiset of faithful origins of t w.r.t. T+ and S+ := S′ ∪
{s ∈ S |M0(s) > 0}. By Lemma 6.7(b), taking k=1 and M̄ := M ′ +•U ′+ (M0 −M ′0),
and using Condition 1 of Theorem 6.8, ∗t ≤M ′ +•U ′ + (M0 −M ′0). So by Condition 3
of Theorem 6.8 there is a t′ ∈ T ′ with ℓ(t′) = ℓ(t) and •t′ ≤M ′+•U ′+(M0−M ′0). Since
•t′ ∈ NS′

and M ′0 = M0 ↾S
′, this implies •t′ ≤M ′+•U ′. It follows that (M ′+•U ′)[t′〉N ′

and hence (M ′ +•U ′)
a
−→.

Now assume H− 6= ∅. By the same proof as for (b) above, case H− 6= ∅, there is a
transition u ∈ H− that is enabled in MH . So MH [u〉M1 for some M1 ∈ [M0〉N , and
M1 = M ′ +•U ′ + (M0 −M ′0) + JH + uK. By Condition 5f of Theorem 6.8 (still with
empty U), •u ∩ •t = ∅, and thus M1[t〉. By Condition 4 of Theorem 6.8 there exists an
H1 ∈F NF such that ℓ(H1) ≡ ∅, JH1K = JH + uK, and f(H1) = f(H + u)> f(H). Thus
M1 = MH1 and f(HM ′,U−H1) < f(HM ′,U−H). By induction we obtain (M ′+•U ′)

a
−→.

By the above reasoning, there is a t′ ∈ T ′ such that ℓ′(t′) = ℓ(t) and (M ′ +•U ′)[t′〉.
Now take any u′ ∈ U ′. Then there must be an u ∈ U with ℓ′(u′) = ℓ(u). Since M [t〉, we
have (M +•U)[{t}+{u}〉 and by Condition 5g we obtain •t′ ∩ •u′ = ∅. It follows that
M ′[t′〉, and hence M ′

a
−→.

Theorem 6.8 will be applied in Section 7 to show the correctness of our conflict replicating
implementation N of a given net N ′. A crucial observation about N is that its internal
transitions can be partitioned into a set T+ of transitions (3 boxes in Figure 10) that have
to occur before firing executeij (for some i and j) and a set T− of transitions (14 boxes) that
can only occur afterwards. In the construction of our bisimulation we consider markings of

ON CHARACTERISING DISTRIBUTABILITY 37

the form M ′ + •U ′ + (M0−M
′
0) + JHK, where H is a signed multiset of internal transitions

that tells how much the marking deviates from the marking M ′ + •U ′ + (M0−M
′
0) of N .

The bisimulation relates both markings of N to the marking M ′ + •U ′ of N ′. When an
internal transition of N fires, the related marking of N ′ remains the same. However, when
N fires a visible transition executeij then the related marking of N ′ becomes M ′+ •U ′+ JiK,

so in view of the structural property in Lemma 6.4(1), a new set H ′ can be calculated as
H ′ := H−G, where G is the signed multiset for which JiK = Jexecuteij +GK. A consequence
of this is that elements of T+ only occur with positive multiplicities in H, whereas elements
of T− occur only with negative multiplicities.

To be precise, it may be that two different sets H1 and H2 yield the same token
replacement, i.e. JH1K = JH2K. As a result of this, there may be multiple ways to write a
marking as M ′+ •U ′+(M0−M

′
0)+ JHK for given M ′ and U ′. The above applies only when

converting the signed multisets H to a normal form NF that eliminates this ambiguity.
For given M ′ and U ′, the multiset HM ′,U is an upper bound of the possible choices of

H for which M ′ + •U ′ + (M0−M
′
0) + JHK can be a reachable marking. This is expressed

by Condition 5c. If all internal transitions in HM ′,U have fired, the next transition must be
an external one. Now the conditions of Theorem 6.8 guarantee that as long as this upper
bound is not reached, the net N can perform internal actions, and when it is reached (and
possibly also beforehand) it can perform the same actions as the net N ′ under marking M ′.
Condition 4 moreover guarantees that this upper bound will be reached in finitely many
steps. Due the the need to renormalise the signed multisets H after adding elements to
them, this is not straightforward.

These considerations imply that transitions fired by N ′ can be simulated by N . The
other direction involves similar arguments, together with an application of Lemma 6.7.

Digression: Interleaving semantics. Above, a method is presented for establishing
the equivalence of two Petri nets, one of which known to be plain, up to branching ST-
bisimilarity with explicit divergence. Here, we simplify this result into a method for estab-
lishing the equivalence of the two nets up interleaving branching bisimilarity with explicit
divergence. This result is not applied in the current paper.

Lemma 6.9. Let N = (S, T, F,M0, ℓ) and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be two nets, N ′ being

plain. Suppose there is a relation B ⊆ NS ×NS′

such that

(a) M0BM
′
0,

(b) if M1BM
′
1 and M1

τ
−→M2 then M2BM

′
1,

(c) if M1BM
′
1 and M1

a
−→M2 for some a ∈ Act then ∃M ′2. M

′
1

a
−→M ′2 ∧M2BM

′
2,

(d) if M1BM
′
1 and M ′1

a
−→ for some a ∈ Act then either M1

a
−→ or M1

τ
−→

(e) and there is no infinite sequence M
τ
−→M1

τ
−→M2

τ
−→ · · · with MBM ′ for some M ′.

Then N and N ′ are interleaving branching bisimilar with explicit divergence.

Proof. This follows directly from Lemma 6.2 by taking (S1,T1,M01) and (S2,T2,M02) to
be the interleaving LTSs associated to N and N ′ respectively, using the fact that the LTS
associated to a plain net is deterministic.

Lemma 6.10. Let N = (S, T, F,M0, ℓ) be a net and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be a plain net

with S′ ⊆ S and M ′0 = M0 ↾ S
′. Suppose:

(1) ∀t ∈ T, ℓ(t) 6= τ. ∃t′ ∈ T ′, ℓ(t′) = ℓ(t). ∃G ∈F N
T , ℓ(G) ≡ ∅. Jt′K = Jt+GK.

38 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

(2) For any G ∈F Z
T with ℓ(G)≡ ∅, M ′ ∈ [M ′0〉N ′ and M := M ′+(M0−M

′
0)+JGK ∈ [M0〉N ,

it holds that:
(a) there is no infinite sequence M

τ
−→M1

τ
−→M2

τ
−→ · · · ,

(b) if M ′
a
−→ with a ∈ Act then M

a
−→ or M

τ
−→

(c) and if M
a
−→ with a ∈ Act then M ′

a
−→.

Then N and N ′ are interleaving branching bisimilar with explicit divergence.

Proof: Define B ⊆ NS ×NS′

by

MBM ′ :⇔M ′ ∈ [M ′0〉N ′ ∧ ∃G ∈F Z
T . M = M ′+(M0−M

′
0)+JGK ∈ [M0〉N ∧ ℓ(G) ≡ ∅.

It suffices to show that B satisfies Conditions (a)–(e) of Lemma 6.9.

(a) Take G = ∅.
(b) SupposeM1BM

′
1 andM1

τ
−→M2. Then ∃G ∈F Z

T. M1 = M ′1+(M0−M
′
0)+JGK∧ℓ(G) ≡

∅ and ∃t∈T. ℓ(t) = τ∧M2 = M1+JtK = M ′1+(M0−M
′
0)+JG+tK. Moreover, M1 ∈ [M0〉N

and hence M2 ∈ [M0〉N . Furthermore, M ′1 ∈ [M ′0〉N ′ and ℓ(G+ t) ≡ ∅, so M2BM
′
1.

(c) SupposeM1BM
′
1 andM1

a
−→M2. Then ∃G ∈F Z

T. M1 = M ′1+(M0−M
′
0)+JGK∧ℓ(G) ≡

∅ and ∃t ∈ T. ℓ(t) = a 6= τ ∧M2 = M1 + JtK = M ′1 + (M0 −M ′0) + JG+ tK. Moreover,
M1 ∈ [M0〉N and hence M2 ∈ [M0〉N . Furthermore, M ′1 ∈ [M ′0〉N ′ . By Condition 1 of

Lemma 6.10, ∃t′ ∈ T ′, ℓ(t′) = ℓ(t). ∃Gt ∈F N
T , ℓ(Gt) ≡ ∅. JtK = Jt′ −GtK. Substitution

of Jt′ − GtK for t yields M2 = M ′1 + Jt′K + (M0−M
′
0) + JG − GtK. By Condition 2c,

M ′1
a
−→, so M ′1

a
−→ M ′2 for some M ′2 ∈ [M ′0〉N ′ . As t′ is the only transition in T ′ with

ℓ′(t′) = a, we must have M ′1[t
′〉M ′2. So M ′1 + Jt′K = M ′2. Since ℓ(G−Gt) ≡ ∅ it follows

that M2BM
′
2.

(d) Follows directly from Condition 2b.
(e) Follows directly from Condition 2a.

The above is a variant of Lemma 6.4 that requires Condition 2 only for U = U ′ = ∅, and
allows to conclude that N and N ′ are interleaving branching bisimilar (instead of branching
ST-bisimilar) with explicit divergence. Likewise, the below is a variant of Theorem 6.8 that
requires Condition 5 only for U = U ′ = ∅, and misses Condition 5g.

Theorem 6.11. Let N = (S, T, F,M0, ℓ) be a net and N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be a plain

net with S′ ⊆ S and M ′0 = M0 ↾ S′. Suppose there exist sets T+ ⊆ T and T− ⊆ T and a

class NF ⊆ ZT , such that

(1)-(4) Conditions (1)–(4) from Theorem 6.8 hold, and
(5) For every reachable marking M ′ ∈ [M ′0〉N ′ there is an HM ′ ∈F N

T+ with ℓ(HM ′) ≡ ∅,
such that for each H ∈F NF with M := M ′ + (M0 −M ′0) + JHK ∈ [M0〉N one has:

(a) MM ′ := M ′ + (M0 −M ′0) + JHM ′K ∈ NS,
(b) if M ′

a
−→ with a ∈ Act then MM ′

a
−→,

(c) H ≤ HM ′,
(d) if H(u) < 0 then u ∈ T−,
(e) if H(u) < 0 and H(t) > 0 then •u ∩ •t = ∅,
(f) if H(u) < 0 and M [t〉 with ℓ(t) 6= τ then •u ∩ •t = ∅.

Then N and N ′ are interleaving branching bisimilar with explicit divergence.

Proof. A straightforward simplification of the proof of Theorem 6.8.

ON CHARACTERISING DISTRIBUTABILITY 39

7. The Correctness Proof

We now apply the preceding theory to prove the correctness of the conflict replicating
implementation.

Theorem 7.1. Let N ′ be a finitary plain structural conflict net without a fully reachable
pure M. Then I(N ′) ≈∆

bSTb N
′.

Proof: Let N ′ = (S′, T ′, F ′,M ′0, ℓ
′) be the given finitary plain structural conflict net with-

out a fully reachable pure M, and N = (S, T, F,M0, ℓ) be its conflict replicated implemen-
tation I(N ′). This convention (at the expense of primes in the statement of the theorem)
pays off in terms of a significant reduction in the number of primes in this paper.

For future reference, Table 2 provides a place-oriented representation of the conflict
replicating implementation of a given net N ′ = (S′, T ′, F ′,M ′0, ℓ

′), with the macros for
reversible transitions expanded. Here T← = {initialisej | j ∈ T ′} ∪ {transferhj | h <# j ∈ T ′},
(transferhj)

far = {transhj -out} and (initialisej)
far = {prejk | k ≥

j} ∪ {transhj -in | h <# j}.

Place Pretransitions arc weights Posttransitions arc weights for all

p finalisei F ′(i, p) distributep (if p• 6= ∅) p ∈ S′, i ∈ •p

pc

{

distributep
initialisec · undoneF

′(p, c)
initialisec · fire F ′(p, c)

fetchp,ci,j F ′(p, i)

p ∈ S′, c ∈ p•

j ≥# i ∈ p•

πc (marked) initialisec · reseti initialisec · fire i
#
= c ∈ T ′

preij

{

initialisei · fire
executeij

executeij
initialisei · undo(preij)

j ≥# i ∈ T ′

transhj -in

{

initialisej · fire
transferhj · undone

transferhj · fire
initialisej · undo(transhj -in)

h <# j ∈ T ′

transhj -out

{

transferhj · fire
executeij

executeij
transferhj ·undo(transhj -out)

h <# j ∈ T ′, i ≤# j

πj#l (marked)

{

fetchedij
transferjl · resetc

executeij
transferjl · fire

i ≤# j <# l ∈ T ′, c
#
= l

fetchp,ci,j -in executeij fetchp,ci,j j ≥# i ∈ T ′, p ∈ •i, c ∈ p•

fetchp,ci,j -out fetchp,ci,j fetchedij j ≥# i ∈ T ′, p ∈ •i, c ∈ p•

undoi(t) executeij · fire t · undoi, t · elidei j ≥# i ∈ T ′, t ∈ Ωi

reseti(t) fetchedij t · reseti, t · elidei j ≥# i ∈ T ′, t ∈ Ωi

acki(t) t · reseti, t · elidei finalisei i ∈ T ′, t ∈ Ωi

fired(t) t · fire t · undoi t ∈ T←, Ωi ∋ t
ρi(t) t · undoi t · reseti t ∈ T←, Ωi ∋ t
take(f, t) t · undoi t · undo(f) t ∈ T←, Ωi ∋ t, f ∈ t far

took(f, t) t · undo(f) t · undone t ∈ T←, f ∈ t far

ρ(t) t · undone t · reseti t ∈ T←, Ωi ∋ t

Table 2: The conflict replicating implementation.

We will obtain Theorem 7.1 as an application of Theorem 6.8. Following the construc-
tion of N described in Section 5.4, we indeed have S′ ⊆ S and M ′0 = M0 ↾ S′. Let T+ ⊆ T

40 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

be the set of transitions

distributep initialisej · fire transferhj · fire (7.1)

for any applicable values of p ∈ S′ and h, j ∈ T ′. Furthermore, T− := (T \ (T+ ∪ {executeij |

i ≤# j ∈ T ′})). We start with checking Conditions 1, 2 and 3 of Theorem 6.8.

1. Let <+ be the partial order on T+ given by the order of listing in (7.1)—so initialisei ·
fire <+ transferhj · fire, for any i ∈ T ′ and h <# j ∈ T ′, but the transitions transferhj · fire

and transferkl · fire for (i, j) 6= (k, l) are unordered. By examining Table 2 we see that for
any place with a pretransition t in T+, all its posttransitions u in T+ appear higher in
the <+-ordering: t <+ u. From this it follows that F ↾ (S ∪ T+) is acyclic.

2. Let <− be the partial order on T− given by the column-wise order of the following
enumeration of T−:

t · undoi
transferhj · undo(f)
transferhj · undone
initialisej · undo(f)
initialisej · undone

fetchp,ci,j

fetchedij
t · reseti
t · elidei
finalisei

for any t ∈ {initialisej , transferhj } and any applicable values of f∈S, p∈S′, and h, i, j, c∈T ′.
By examining Table 2 we see that for any place with a pretransition t in T−, all its
posttransitions u in T− appear higher in the <−-ordering: t <− u. From this it follows
that F ↾ (S ∪ T−) is acyclic.

3. The only transitions t ∈ T with ℓ(t) 6= τ are executeij, with i ≤# j ∈ T ′. So take

i ≤# j ∈ T ′. Then the only transition t′ ∈ T ′ with ℓ′(t′) = ℓ(executeij) is i. Now two

statements regarding i and executeij need to be proven. For the first, note that, for any

p ∈ •i, the places p, pi and preij are faithful w.r.t. T+ and S′ ∪ {s ∈ S | M0(s) > 0}.

Hence p distributep pi initialisei · fire preij executeij is a faithful path from p to executeij .

The arc weight of this path is F ′(p, i). Thus •i ≤ ∗executeij.

The second statement holds because, for all i ≤# j ∈ T ′,

JiK = Jexecuteij+
∑

p∈•i

(

F ′(p, i)·distributep+
∑

c∈p•

fetchp,ci,j

)

+ fetchedij+finalisei+
∑

t∈Ωi

t·elideiK.

(7.2)
To check that these equations hold, note that

JdistributepK = −{p}+ {pc | c ∈ p•},
JexecuteijK = −{πj#l | l ≥

j}+ {fetchp,ci,j -in | p ∈ •i, c ∈ p•}+ {undoi(t) | t ∈ Ωi},
Jfetchp,ci,j K = −{fetchp,ci,j -in} − F ′(p, i) · {pc}+ {fetchp,ci,j -out},
JfetchedijK = −{fetchp,ci,j -out | p ∈ •i, c ∈ p•}+ {πj#l | l ≥

j}+ {reseti(t) | t ∈ Ωi},
Jt · elideiK = −{undoi(t), reseti(t) | t ∈ Ωi}+ {acki(t) | t ∈ Ωi},
JfinaliseiK = −{acki(t) | t ∈ Ωi}+

∑

r∈i•

F ′(i, r) · {r}.

Before we define the class NF ⊆ ZT of signed multisets of transitions in normal form, and
verify conditions 4 and 5, we derive some properties of the conflict replicating implementa-
tion N = I(N ′).

ON CHARACTERISING DISTRIBUTABILITY 41

Claim 7.2. For any M ′ ∈ ZS′

and G ∈F Z
T such that M := M ′ + (M0 −M ′0) + JGK ∈ NS

and for each i ∈ T ′ and t ∈ Ωi we have

G(t · elidei) +G(t · undoi) ≤
∑

j≥#i

G(executeij) (7.3)

G(finalisei) ≤ G(t · elidei) +G(t · reseti) ≤
∑

j≥#i

G(fetchedij) (7.4)

G(t · reseti) ≤ G(t · undoi). (7.5)

Moreover, for each t ∈ T← and f ∈ t far ,
∑

{ω|t∈Ωω}

G(t · resetω) ≤ G(t · undone) ≤ G(t · undo(f)) ≤
∑

{ω|t∈Ωω}

G(t · undoω) ≤ G(t · fire) (7.6)

and for each appropriate c, h, i, j, l ∈ T ′ and p ∈ S′:

G(fetchedij) ≤ G(fetchp,ci,j) ≤ G(executeij) (7.7)

G(initialisej · fire) ≤ 1 +
∑

ω

G(initialisej · resetω) (7.8)

G(transferhj ·fire)−G(transferhj ·undone) ≤ G(initialisej·fire)−G(initialisej·undo(transhj -in)) (7.9)

G(transferjl · fire) +
∑

i≤#j

G(executeij) ≤ 1 +
∑

ω

G(transferjl ·resetω)+
∑

i≤#j

G(fetchedij) (7.10)

if M [executeij〉 then 1 ≤ G(initialisei·fire)−G(initialisei·undo(preij)) (7.11)

if ∃i. M [executeij〉 then 1 ≤ G(transferhj ·fire)−G(transferhj ·undo(transhj -out)) (7.12)

F ′(p, c)·
(

G(initialisec·fire)−G(initialisec·undone)
)

+
∑

j≥#i∈p•

F ′(p, i) ·G(fetchp,ci,j) ≤ G(distributep)

(7.13)

G(distributep) ≤M ′(p) +
∑

{i∈T ′|p∈i•}

G(finalisei). (7.14)

Proof: For any i ∈ T ′ and t ∈ Ωi, we have

M(undoi(t)) =
(

∑

j≥#i

G(executeij)
)

−G(t · elidei)−G(t · undoi) ≥ 0,

given that M ′(undoi(t)) = (M0 −M ′0)(undoi(t)) = ∅. In this way, the place undoi(t) gives
rise to the inequation (7.3) about G. Likewise, the places acki(t), reseti(t) and ρi(t), respec-
tively, contribute (7.4) and (7.5), whereas ρ(t), took(t), take(t) and fired(t) yield (7.6). The
remaining inequations arise from fetchp,ci,j -out, fetchp,ci,j -in, πj , transhj -in, πj#l, preij, transhj -out,
pc and p, respectively.

(7.10) can be rewritten as T j
l +

∑

i≤#j E
i
j ≤ 1, where T j

l := G(transferjl ·fire)−
∑

ω G(transferjl ·

resetω) and Ei
j := G(executeij)−G(fetchedij). By (7.6)

∑

ω G(transferjl · reseti) ≤ G(transferjl ·

fire), so T j
l ≥ 0, and likewise, by (7.7), Ei

j ≥ 0 for all i ≤# j. Hence, for all i ≤# j <# l ∈ T ′,

0 ≤ T j
l ≤ 1 0 ≤ Ei

j ≤ 1 T j
l +

∑

i≤#j

Ei
j ≤ 1. (7.15)

In our next claim we study triples (M,M ′, G) with

(A) M ∈ [M0〉N , M ′ ∈ [M ′0〉N ′ and G ∈F Z
T ,

(B) M = M ′ + (M0 −M ′0) + JGK,

42 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

(C) G(finalisei) = 0 for all i ∈ T ′,
(D) G(distributep) ≤M ′(p) for all p ∈ S′,

(E) G(fetchedkl) ≥ 0 for all k ≤# l ∈ T ′,

(F) G(distributep) ≥ F ′(p, i) ·G(executeij) for all i ≤
j ∈ T ′ and p ∈ •i,

(G) 0 ≤ G(executeij) ≤ 1 for all i ≤# j ∈ T ′,
(H) G(distributep) ≥ F ′(p, j) ·G(executeij) for all i ≤

j ∈ T ′ and p ∈ •j,
(I) (in the notation of (7.15)) if Ei

j = 1 with i ≤# j ∈ T ′ then T h
j = 1 for all h <# j,

(J) there are no j ≥# i
#
=k ≤# l∈T ′ with (i, j) 6=(k, ℓ), G(executeij)> 0 and G(executekl)> 0,

(K) there are no i ≤# j
#
=k ≤# l∈T ′ with (i, j) 6=(k, ℓ), G(executeij)> 0 and G(executekl)> 0.

Given such a triple (M1,M
′
1, G1) and a transition t ∈ T , we define next(M1,M

′
1, G1, t) =:

(M,M ′, G) as follows: Let G2 := G1+{t}. Take M := M1+JtK = M ′1+(M0−M
′
0)+JG2K. In

case t is not of the form finalisei we take M ′ := M ′1 ∈ [M ′0〉N ′ and G := G2 ∈F Z
T . In case t=

finalisei for some i ∈ T ′ then 1 = G2(finalisei) ≤
∑

j≥#iG2(executeij) =
∑

j≥#iG1(executeij)
by (C), (7.4) and (7.7), so by (G) and (J) there is a unique j ≥# i with G1(executeij) = 1.
We take M ′ := M ′1 + JiK and G := G2 −Gi

j , where Gi
j is the right-hand side of (7.2).

Claim 7.3.

(1) If M1[t〉 and (M1,M
′
1, G1) satisfies (A)-(K), then so does next(M1,M

′
1, G1, t).

(2) For any M ∈ [M0〉N there exist M ′ and G such that (A)-(K) hold.

Proof: (2) follows from (1) via induction on the reachability of M . In case M = M0 we
take M ′ := M ′0 and G := ∅. Clearly, (A)–(K) are satisfied.

Hence we now show (1). Let (M,M ′, G) := next(M1,M
′
1, G1, t). We check that

(M,M ′, G) satisfies the requirements (A)–(K).

(A) By construction, M ∈ [M0〉N and G ∈F Z
T . If t is not of the form finalisei we have

M ′ =M1 ∈ [M ′0〉N ′ . Otherwise, by (D) and (F) we have M ′1(p) ≥ G1(distributep) ≥
F ′(p, i) for all p∈•i, and henceM ′1[i〉. This in turn implies thatM ′ = M ′1+JiK ∈ [M ′0〉N ′ .

(B) In case t is not of the form finalisei we have

M = M1 + JtK = M ′1 + (M0 −M ′0) + JG1 + tK = M ′ + (M0 −M ′0) + JGK.

In case t = finalisei we have M = M ′1 + (M0 −M ′0) + JG2K = M ′ + (M0 −M ′0) + JGK,
using that JiK = JGi

j K.

(C) In case t = finalisei we have G(finalisei) = G1(finalisei)+1−Gi
j (finalisei) = 0+1−1 = 0.

Otherwise G(finalisei) = G1(finalisei) + 0 = 0 + 0 = 0.
(D) This follows immediately from (C) and (7.14).
(E) The only time that this invariant is in danger is when t = finalisei. Then G = G1 +
{finalisei} − Gi

j for a certain j ≥# i with G1(executeij) = 1. By (J)9 G1(executeil) ≤ 0

for all l ≥# i with l 6= j. Hence by (7.7) G1(fetchedil) ≤ 0 for all such l. By (C)
G2(finalisei) = G1(finalisei)+1 = 1, so by (7.4)

∑

l≥#i G1(fetchedil)=
∑

l≥#iG2(fetchedil)

> 0; hence it must be that G1(fetchedij)>0. By (E)9 G1(fetchedkl)≥0 for all k ≤# l∈T ′.

Given that Gi
j (fetchedij) = 1 and Gi

j (fetchedkl) = 0 for all (k, l) 6= (i, j), we obtain

G(fetchedkl) ≥ 0 for all k ≤# l ∈ T ′.

9We use (J) and (E) for G1 only, making use of the induction hypothesis.

ON CHARACTERISING DISTRIBUTABILITY 43

(F) Take i≤#j ∈ T ′ and p ∈ •i. There are two occasions where the invariant is in danger:
when t = executeij and when t = finalisek with k ∈ T ′. First let t = executeij. Then

M1[executeij〉. Thus,

G(distributep)

≥ F ′(p, i) ·
(

G(initialisei · fire)−G(initialisei · undone)
)

+
∑

h≥#g∈p•

F ′(p, g) ·G(fetchp,ig,h)

≥ F ′(p, i) ·
(

G(initialisei · fire)−G(initialisei · undone)
)

+
∑

h≥#g∈p•

F ′(p, g) ·G(fetchedgh)

≥ F ′(p, i) ·
(

G(initialisei · fire)−G(initialisei · undone)
)

+ F ′(p, i) ·G(fetchedij)

≥ F ′(p, i) ·
(

(

G(initialisei · fire)−G(initialisei · undo(preij))
)

+G(fetchedij)
)

≥ F ′(p, i) ·
(

1 +G(fetchedij)
)

≥ F ′(p, i) ·G(executeij)

by (7.13), (7.7), (E), (7.6), (7.11) and (7.15), respectively. By (7.6) G(initialisei · fire)−
G(initialisei · undone) ≥ 0. So by (7.13), (E), and (7.7) G(distributep) ≥ 0. For this
reason we may assume, w.l.o.g., that G(executeij) ≥ 1.

We have G = G1 + {finalisek} −Gk
l for certain l ≥# k with G1(executekl) = 1. Since

Gi
j (executeij)≥ 0, we also have G1(executeij) ≥ 1. By (J) this implies that ¬(i

#
= k) or

(i, j) = (k, l). In the latter caseG(executeij) = G1(executeij)−Gi
j (executeij) = 1−1 = 0,

contradicting our assumption. In the former case p /∈ •k, so Gk
l (distributep) = 0 and

hence G(distributep) = G1(distributep) ≥ F ′(p, i) ·G1(executeij) = F ′(p, i) ·G(executeij).

(G) That G(executeij) ≥ 0 follows from (E) and (7.7). If G(executeij) ≥ 2 for some i ≤#

j ∈ T ′ then M ′(p) ≥ G(distributep) ≥ 2 · F ′(p, i) for all p ∈ •i, using (D) and (F), so
M ′[2 · {i}〉N ′ . Since N ′ is a finitary structural conflict net, it has no self-concurrency,
so this is impossible.

(H) Take i ≤# j ∈ T ′ and p ∈ •j. The case i = j follows from (F), so assume i <# j. By
(7.6) we have G(initialisei · fire)−G(initialisei · undone) ≥ 0. So by (7.13), (E), and (7.7)
G(distributep) ≥ 0. Hence, using (G), we may assume, w.l.o.g., that G(executeij) = 1.
We need to investigate the same two cases as in the proof of (F) above. First let
t = executeij . Then M1[executeij〉. Thus,

G(distributep) (by (7.13))

≥ F ′(p, j) ·
(

G(initialisej · fire)−G(initialisej · undone)
)

+
∑

h≥#g∈p•

F ′(p, g) ·G(fetchp,jg,h)

≥ F ′(p, j) ·
(

G(initialisej · fire)−G(initialisej · undone)
)

(by (E) and (7.7))
≥ F ′(p, j) ·

(

G(initialisej · fire)−G(initialisej · undo(transij-in))
)

(by (7.6))

≥ F ′(p, j) ·
(

G(transferij · fire)−G(transferij · undone) (by (7.9))

≥ F ′(p, j) ·
(

G(transferij · fire)−G(transferij · undo(transij-out))
)

(by (7.6))

≥ F ′(p, j) (by (7.12)).

Now let t = finalisek with k ∈ T ′. We have G = G1 + {finalisek} − Gk
l for certain

l ≥# k with G1(executekl) = 1. Since Gi
j (executeij)≥ 0, we also have G1(executeij) ≥ 1.

By (K) this implies that ¬(j
#
= k) or (i, j) = (k, l). In the latter case G(executeij) =

G1(executeij)−Gi
j (executeij) = 1− 1 = 0, contradicting our assumption. In the former

case p /∈ •k, so Gk
l (distributep) = 0 and hence G(distributep) = G1(distributep) ≥ F ′(p, j) ·

G1(executeij) = F ′(p, j) ·G(executeij).

44 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

(I) Let i≤#j∈T ′ and h <# j. Since, for all k≤#l∈T ′, Gk
l (transferhj ·fire)=

∑

ω G
k
l (transferhj ·

resetω) = 0 and Gk
l (executeij) = Gk

l (fetchedij), the invariant is preserved when t has the
form finaliseb. Using (7.15), it is in danger only when t = executeij or t = transferhj ·resetω
for some ω with transferhj ∈ Ωω.

First assumeM1[executeij〉 and T h
j = G1(transferhj ·fire)−

∑

ω G1(transferhj ·resetω) = 0.
Then

1 ≤ G1(transferhj · fire)−G1(transferhj · undo(transhj -out)) (by (7.12))

≤ G1(transferhj · fire)−
∑

ω G1(transferhj · resetω) = 0 (by (7.6)),

which is a contradiction.
Next assume t = transferhj · resetk with k

#
= j, and Ei

j = 1. By (E) and (G) the latter
implies that G1(executeij) = 1 and G1(fetchedij) = 0. Then

0 = G1(finalisek) (by (C))
≤ G1(transferhj · elidek) +G1(transferhj · resetk) (by (7.4))

< G(transferhj · elidek) +G(transferhj · resetk)
≤

∑

l≥#k G(fetchedkl) (by (7.4)).

Hence G1(fetchedkl)=G(fetchedkl)>0 for some l ≥# k, and by (7.7) also G1(executekl)>0.

Using (K) we obtain (i,j)=(k, l), thereby obtaining a contradiction (0=G1(fetchedij)=
G1(fetchedkl)> 0).

(J) Let j ≥# i
#
= k ≤# l ∈ T ′ with (i, j) 6= (k, ℓ). The invariant is in danger only

when t= executeij or t= executekl . W.l.o.g. let t= executekl , with G1(executekl) = 0 and
G1(executeij)≥ 1.

Making a case distinction, first assume G(fetchedij)≥ 1. Using (D), (F) and that
G(executekl) = 1, M ′(p) ≥ G(distributep) ≥ F ′(p, k) for all p ∈ •k. Likewise, M ′(p) ≥
G(distributep) ≥ F ′(p, i) for all p ∈ •i. Moreover, just as in the proof of (F), we derive,
for all p ∈ •i ∩ •k,

M ′(p) ≥ G(distributep)

≥ F ′(p, k) ·
(

G(initialisek · fire)−G(initialisek · undone)
)

+
∑

h≥#g∈p•

F ′(p, g) ·G(fetchp,kg,h)

≥ F ′(p, k) ·
(

G(initialisek · fire)−G(initialisek · undone)
)

+
∑

h≥#g∈p•

F ′(p, g) ·G(fetchedgh)

≥ F ′(p, k) ·
(

G(initialisek · fire)−G(initialisek · undone)
)

+ F ′(p, i) ·G(fetchedij)
≥ F ′(p, k) ·

(

G(initialisek · fire)−G(initialisek · undo(prekl))
)

+ F ′(p, i) ·G(fetchedij)
≥ F ′(p, k) + F ′(p, i)

by (D), (7.13), (7.7), (E), (7.6) and (7.11), respectively. It follows that M ′[{k}+{i}〉.
As i

#
= k and N ′ is a finitary structural conflict net, this is impossible. (Note that this

argument holds regardless whether i = k.)
Now assume G(fetchedij)≤0. Then, in the notation of (7.15), Ei

j=1. As G1(executekl)
= 0, (E) and (7.7) yield G1(fetchedkl) = 0. Hence G(executekl) = 1 and G(fetchedkl) = 0,

so Ek
l = 1. We will conclude the proof by deriving a contradiction from Ei

j = Ek
l = 1.

In case j = l this contradiction emerges immediately from (7.15). By symmetry it
hence suffices to consider the case j < l.

By (D) and (H) we have M ′(p) ≥ G(distributep) ≥ F ′(p, j) for all p ∈ •j, so M ′[j〉.
Likewise M ′[l〉 and, using (F), M ′[i〉 and M ′[k〉. Since j

#
= i

#
= k and N ′ has no

ON CHARACTERISING DISTRIBUTABILITY 45

fully reachable pure M, j
#
= k. Since j

#
= k

#
= l and N ′ has no fully reachable pure M,

j
#
= l. So j <# l. By (7.15), using that Ei

j = 1, T j
l = 0. This is in contradiction with

Ek
l = 1 and (I).

(K) Suppose that G(executeij) > 0 and G(executekl) > 0, with i ≤# j
#
= k ≤# l ∈ T ′. By

(D) and (H) we have M ′(p)≥G(distributep)≥F ′(p, j) for all p∈ •j, so M ′[j〉. Likewise,
using (F), M ′[i〉 and M ′[k〉. Since i

#
= j

#
=k and N ′ has no fully reachable pure M, i

#
=k.

Using this, the result follows from (J).

Claim 7.4. For any M ∈ [M0〉N there exist M ′ ∈ [M ′0〉N ′ and G ∈F Z
T satisfying (A)–(K)

from Claim 7.3, and

(L) there are no j ≥# i
#
= k ≤# l ∈ T ′ with M [executeij〉 and G(executekl) > 0,

(M) there are no i ≤# j
#
= k ≤# l ∈ T ′ with M [executeij〉 and G(executekl) > 0,

(N) if M [executeij〉 for i ≤
j ∈ T ′ then M ′[j〉.

Proof: Given M , by Claim 7.3(2) there are M ′ and G so that the triple (M,M ′, G) satisfies
(A)–(K). Assume M [executeij〉 for some i ≤# j ∈ T ′. Let M1 := M + JexecuteijK and

G1 := G+ {executeij}. By (G) G(executeij) ≥ 0, so G1(executeij) > 0. By Claim 7.3(1) the

triple (M1,M
′, G1) satisfies (A)–(K).

(L) Suppose G(executekl) > 0 for certain l ≥# k
#
=i. In case (i, j) = (k, ℓ), G1(executeij) ≥ 2,

contradicting (G). In case (i, j) 6= (k, ℓ), G1 fails (J), also a contradiction.
(M) Suppose G(executekl) > 0 for certain l ≥# k

#
= j. Then G1 fails (G) or (K), a contra-

diction.
(N) By (D) and (H) M ′(p) ≥ G1(distributep) ≥ F (p, j) for all p ∈ •j, so M ′[j〉.

Claim 7.5. If M [{executeij}+{executekl }〉 for some M ∈ [M0〉N then ¬(i
#
= k).

Proof: Suppose M [{executeij}+{executekl }〉 for some M ∈ [M0〉N . By Claim 7.3(2) there
exist M ′ ∈ [M ′0〉N ′ and G ∈F Z

T satisfying (A)–(K). Let M1 := M + Jexecutekl K and
G1 := G+ {executekl }. By Claim 7.3(1) the triple (M1,M

′, G1) satisfies (A)–(K). Let M2 :=
M1+ JexecuteijK and G2 := G1 + {executeij}. Again by Claim 7.3(1), the triple (M2,M

′, G2)

also satisfies (A)–(K). As (G) implies G(executeij)≥ 0, in case (i, j) = (k, l) we obtain
G2(executeij)≥ 2, contradicting (G). Hence (i, j) 6= (k, l). Moreover, G2(executekl) > 0 and
G2(executeij) > 0. Now (J) implies ¬(i

#
= k).

For any t ∈ {initialisej , transferhj } with h, j ∈ T ′, and any ω ∈ Ω with t ∈ Ωω, we write

t(ω) := t · fire + t · undoω +
(

∑

f∈t far

t · undo(f)
)

+ t · undone + t · resetω .

The transition t has no preplaces of type in, nor postplaces of type out. By checking in
Table 1 or Figure 8 that each other place occurs as often in •u(ω) + (u · elideω)

• as in
u(ω)• + •(u · elideω), one verifies, for any ω ∈ Ω with t ∈ Ωω, that

Jt(ω)K = Jt · elideωK. (7.16)

Let ≡ be the congruence relation on finite signed multisets of transitions generated by

t(ω) ≡ t · elideω (7.17)

for all t ∈ {initialisej , transferhj | h, j ∈ T ′} and ω ∈ Ω with Ωω ∋ t. Here congruence means

that G1≡G2 implies k ·G1≡ k ·G2 and G1+H≡G2+H for all k∈Z and H ∈F Z
T . Using

(7.16) G1 ≡ G2 implies JG1K = JG2K.

46 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

Claim 7.6. If M ′ = JGK for M ′ ∈ ZS′

and G ∈F Z
T such that for all i ∈ T ′ we have

G(finalisei)=0 and either ∀j ≥# i. G(executeij)≥ 0 or ∀j ≥# i. G(executeij)≤ 0, then G≡∅.

Proof: Let M ′ and G be as above. W.l.o.g. we assume G(t · elideω) = 0 for all t ∈
{initialisej, transferhj } and all ω ∈ Ω with t ∈ Ωω, for any G can be brought into that

form by applying (7.17). For each s ∈ S \ S′ we have M ′(s) = 0, and using this the in-
equations (7.3)–(7.7) and (7.13) of Claim 7.2 turn into equations. For each i ∈ T ′ we have
G(

∑

j≥#i executeij) = 0, using (the equational form of) (7.3)–(7.5), and that G(finalisei) = 0.

Since G(executeij) ≥ 0 (or ≤ 0) for all j ≥# i, this implies that G(executeij) = 0 for each
i ≤# j ∈ T ′. With (7.7) we obtain G(fetchedij) = G(fetchp,ci,j) = 0 for each applicable p, c, i, j.

Using that G(t · elideω) = 0 for each applicable t and ω, with (7.4)–(7.6) and (7.13) we find
G(t) = 0 for all t ∈ T .

Claim 7.7. Let M := M ′ + (M0−M
′
0) + JHK ∈ [M0〉N for M ′ ∈ [M ′0〉N ′ and H ∈F Z

T with
H(executeij) = 0 for all i ≤# j ∈ T ′.

(a) If H(finalisei) < 0 and H(finalisek) < 0 for certain i, k ∈ T ′ then ¬(i # k).
(b) If M [executeij〉 and H(finalisek) < 0 for certain i, k ∈ T ′ then ¬(i

#
= k) and ¬(j

#
= k).

(c) H(distributep) ≥ 0 for all p ∈ S′ (with p• 6= ∅).
(d) Let c

#
= i ∈ T ′. If H(distributep) ≥ F ′(p, c) for all p ∈ •c, then H(finalisei) = 0.

(e) If M [executeij〉 with i ≤# j ∈ T ′ then M ′[j〉.

Proof: By Claim 7.4 there exist M ′1 ∈ [M ′0〉N ′ and G1 ∈F Z
T satisfying (B)–(N) (with M ,

M ′1 and G1 playing the rôles of M , M ′ and G). In particular, M = M ′1+(M0−M ′0)+ JG1K,
G1(finalisei) = 0 for all i ∈ T ′, and G1(executeij) ≥ 0 for all i ≤# j ∈ T ′. Using (J), for

each i ∈ T ′ there is at most one j ≥# i with G1(executeij) > 0; we denote this j by f(i),
and let f(i) := i when there is no such j. This makes f : T ′ → T ′ a function, satisfying
G1(executeij) = 0 for all j ≥# i with j 6= f(i).

Given that H(executeij) = 0 for all i ≤# j ∈ T ′, (7.3)–(7.5) (or (7.4) and (7.7)) imply
H(finalisei) ≤ 0 for all i ∈ T ′. Let M ′2 := M ′ +

∑

i∈T ′ H(finalisei) · JiK and G2 := H −
∑

i∈T ′ H(finalisei) ·Gi
f(i), where Gi

j is the right-hand side of (7.2). Then M = M ′ + (M0 −

M ′0) + JHK = M ′2 + (M0 −M ′0) + JG2K, using that JiK = JGi
f(i)K. Moreover, G2(finalisei) = 0

for all i ∈ T ′, using that Gi
f(i)(finalisei) = 1.

It follows that M ′1 −M ′2 = JG2 − G1K. Moreover, we have (G2 − G1)(finalisei) = 0
for all i ∈ T ′. We proceed to show that G2 − G1 satisfies the remaining precondition of
Claim 7.6. So let i ∈ T ′. In case H(finalisei) = 0, for all j ≥# i we have G2(executeij) = 0,
and G1(executeij) ≥ 0 by (G). Hence (G2 −G1)(executeij) ≤ 0. In case H(finalisei) < 0, we

have G2(executeif(i)) ≥ 1, and hence, using (G), (G2 −G1)(executeif(i)) ≥ 0. Furthermore,
for all j 6= f(i), G2(executeij) ≥ 0 and G1(executeij) = 0, so again (G2 −G1)(executeij) ≥ 0.

Thus we may apply Claim 7.6, which yields G2≡G1. It follows that M
′
2=M ′1∈ [M

′
0〉N ′ .

(a) Suppose that H(finalisei) < 0 and H(finalisek) < 0 for certain i # k ∈ T ′. Then
G2(executeif(i))> 0 and G2(executekf(k))>0, so G1(executeif(i))>0 and G1(executekf(k))>

0, contradicting (J).
(b) Suppose that M [executeij〉 and H(finalisek) < 0 for certain k

#
= i or k

#
= j.

Then G1(executekf(k)) = G2(executekf(k)) > 0, contradicting (L) or (M).
(c) By (a), for any given p ∈ S′ there is at most one i ∈ p• with H(finalisei) < 0. For

all i ∈ T ′ with i /∈ p• we have Gi
f(i)(distributep) = 0. First suppose k ∈ p• satisfies

ON CHARACTERISING DISTRIBUTABILITY 47

H(finalisek) < 0. Then

G1(executekf(k)) = G2(executekf(k))

= H(executekf(k))−
∑

i∈T ′ H(finalisei) ·Gi
f(i)(executekf(k))

= 0−H(finalisek),

so by (F) G1(distributep) ≥ −F
′(p, k) ·H(finalisek). Hence

H(distributep) = G2(distributep) +
∑

i∈T ′ H(finalisei) ·Gi
f(i)(distributep)

= G1(distributep) +H(finalisek) ·Gk
f(k)(distributep)

≥ −F ′(p, k) ·H(finalisek) +H(finalisek) · F ′(p, k) = 0.

In case there is no i ∈ p• with H(finalisei) < 0 we have

H(distributep) = G2(distributep) +
∑

i∈T ′

H(finalisei) ·Gi
f(i)(distributep) = G1(distributep)≥ 0

by (F) and (G).
(d) Since H(finalisei) ≤ 0 and Gi

f(i)(distributep) ≥ 0 for all i ∈ T ′, also using (c), all sum-
mands in H(distributep) +

∑

i∈T ′ −H(finalisei) ·Gi
f(i)(distributep) are positive. Now sup-

pose H(finalisei) < 0 for certain i ∈ T ′. Then, using (D), for all p ∈ •i,

M ′1(p) ≥ G1(distributep) = G2(distributep) ≥ Gi
f(i)(distributep) = F ′(p, i).

Furthermore, let c
#
= i and suppose H(distributep) ≥ F ′(p, c) for all p ∈ •c. Then, using

(D),
M ′1(p) ≥ G1(distributep) = G2(distributep) ≥ H(distributep) ≥ F ′(p, c)

for all p ∈ •c. Moreover, if p ∈ •c ∩ •i then

M ′1(p) ≥ G2(distributep) ≥ H(distributep) +Gi
f(i)(distributep) ≥ F ′(p, c) + F ′(p, i).

Hence M ′2[{c}+{i}〉. However, since c
#
= i and N ′ is a structural conflict net, this is

impossible.
(e) Suppose M [executeij〉 with i ≤# j ∈ T ′. Then M ′1[j〉 by (N).

Now M ′ = M ′1 +
∑

k∈T ′ −H(finalisek) · JkK, with −H(finalisek) ≥ 0 for all k ∈ T ′.

Whenever −H(finalisek) > 0 then ¬(j
#
= k) by (b). Hence M ′[j〉.

We now define the class NF ⊆ ZT of signed multisets of transitions in normal form by
H ∈ NF iff ℓ(H) ≡ ∅ and, for all t ∈ {initialisej , transferhj | h, j ∈ T ′}:

(NF-1) H(t · elideω) ≤ 0 for each ω ∈ Ω,
(NF-2) H(t · undoω) ≥ 0 for each ω ∈ Ω, or H(t · fire) ≥ 0,
(NF-3) and if H(t · elideω) < 0 for any ω ∈ Ω, then H(t · undoω) ≤ 0 and H(t · fire) ≤ 0.

We proceed verifying the remaining conditions of Theorem 6.8.

4. By applying (7.17), each signed multiset G ∈F Z
T with ℓ(G) ≡ ∅ can be converted

into a signed multiset H ∈F NF with ℓ(H) ≡ ∅, such that JHK = JGK. Namely, for any
t ∈ {initialisej, transferhj | h, j∈T

′}, first of all perform the following three transformations,
until none is applicable:
(i) correct a positive count of a transition t · elideω in G by adding t(ω)− t · elideω to

G;
(ii) if both H(t ·undoω) < 0 for some ω and H(t · fire) < 0, correct this in the same way;
(iii) and if, for some ω, t·elideω has a negative and t·undoω a positive count, add t ·

elideω − t(ω).

48 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

Note that transformation (iii) will never be applied to the same ω as (i) or (ii), so
termination is ensured. Properties (NF-1) and (NF-2) then hold for t. After termination
of (i)–(iii), perform
(iv) if, for some ω, H(t · elideω) < 0 and H(t · fire) > 0, add t · elideω − t(ω).
This will ensure that also (NF-3) is satisfied, while preserving (NF-1) and (NF-2).

Define the function f : T → N by f(u) := 1 for all u ∈ T not of the form u = t ·elideω,
and f(t · elideω) := f(t(ω)) (applying the last item of Definition 2.1). Then surely
f(G) = f(H).

5. Let M ′ ∈ NS′

, U ′ ∈ NT ′

and U ∈ NT with ℓ(U) = ℓ′(U ′) and M ′ + •U ′ ∈ [M ′0〉N ′ .
Since N ′ is a finitary structural conflict net, it admits no self-concurrency, so, as •U ′ ≤
M ′ + •U ′ ∈ [M ′0〉N ′ , the multiset U ′ must be a set. As N ′ is plain, this implies that
the multiset ℓ′(U ′) is a set. Since ℓ(U) = ℓ′(U ′), also ℓ(U), and hence U , must be a
set. All its elements have the form executeij for i ≤# j ∈ T ′, since these are the only

transitions in T with visible labels. Note that U ′ is completely determined by U , namely
by U ′ = {i | ∃j. executeij ∈ U}. We take HM ′,U :=

∑

p∈S′

(M ′+
•
U ′)(p) · {distributep}+

∑

(M ′+•U ′)[j〉

{initialisej · fire}+
∑

h<#j, ∄executeg

h∈U

{transferhj · fire}

Since N ′ is finitary, HM ′,U ∈F N
T+ . Moreover, ℓ(HM ′,U) ≡ ∅.

Let H ∈F NF with M := M ′+•U ′+(M0−M
′
0)+ JHK− •U ∈ NS and M + •U ∈ [M0〉N .

Since H ∈ NF, and thus ℓ(H) ≡ ∅, H(executeij) = 0. From here on we apply Claim 7.2

and Claim 7.7 with M + •U and M ′+ •U ′ playing the rôles of M and M ′. Note that the
preconditions of these claims are met.

That H(executeij) = 0 for all i ≤# j ∈ T ′, together with (7.3) and the requirements

(NF-1) and (NF-3) for normal forms, yields H(t · elidei) ≤ 0 as well as H(t · undoi) ≤ 0.
Using this, (7.4)–(7.7) imply that

H(u) ≤ 0 for each u ∈ T−. (7.18)

Claim 7.8. Let c ∈ T ′ and p ∈ •c. Then
• if H(initialisec · fire) > 0 then H(fetchp,ci,j) = 0 for all i ∈ p• and j ≥# i, and

• if H(transferbc · fire) > 0 for some b <# c then H(fetchp,ci,j) = 0 for all i ∈ p• and j ≥# i.

Proof: Suppose that H(t · fire) > 0, for t = initialisec or t = transferbc. Then (7.8) resp.
(7.15) together with (7.18) implies that H(t · resetω) = 0 for each ω with t ∈ Ωω. In
order words, H(t · reseti) = 0 for each i

#
= c, so in particular for each i ∈ p•. Fur-

thermore, H(t · elidei) ≥ 0, by requirement (NF-3) of normal forms. With (7.4), this
yields

∑

j≥#iH(fetchedij) ≥ 0, and (7.18) implies H(fetchedij) = 0 for each j ≥# i. Now

(7.7, 7.18) gives H(fetchp,ci,j) = 0 for each j ≥# i ∈ p•.

We proceed to verify the requirements (5a)–(5g) of Theorem 6.8.
(5a) To show that MM ′,U ∈ N

S , it suffices to apply it to the preplaces of transitions in
HM ′,U + U :

ON CHARACTERISING DISTRIBUTABILITY 49

MM ′,U (p) = 0 for all p ∈ S′ ;

MM ′,U (pj) =

{

(M ′ +•U ′)(p)− F ′(p, j) if (M ′ +•U ′)[j〉
(M ′ +•U ′)(p) otherwise

for p ∈ S′, j ∈ p•;

MM ′,U (πj) =

{

0 if (M ′ +•U ′)[j〉
1 otherwise

for j ∈ T ′;

MM ′,U (prejk) =

1 if (M ′ +•U ′)[j〉 ∧ executejk /∈ U

−1 if ¬(M ′ +•U ′)[j〉 ∧ executejk ∈ U
0 otherwise

for j ≤# k ∈ T ′;

MM ′,U (πh#j) =

{

0 if ∃executegh ∈ U ∨ (M ′ +•U ′)[j〉
1 otherwise

for h <# j ∈ T ′

MM ′,U (transhj -in) =

{

1 if (M ′ +•U ′)[j〉 ∧ ∃executegh ∈ U
0 otherwise

for h <# j ∈ T ′;

MM ′,U (transhj -out) =

1 if (M ′ +•U ′)[j〉 ∧ ∄executegh ∈ U ∧ ∄executeij ∈ U

−1 if
(

¬(M ′ +•U ′)[j〉 ∨ ∃executegh ∈ U
)

∧ ∃executeij ∈ U

0 otherwise for h <# j ∈ T ′.

For all these places s we indeed have that MM ′,U(s) ≥ 0, for the circumstances
yielding the two exceptions above cannot occur:
• Suppose executejk ∈ U with j ≤# k ∈ T ′. Then j ∈ U ′, so •j ≤ M ′ + •U ′ and

(M ′ +•U ′)[j〉. Consequently, MM ′,U (prejk) 6= −1 for all j ≤# k ∈ T ′.

• Suppose executeij ∈ U with i ≤# j ∈ T ′. Then
•
executeij ≤

•U , so (M +
•U)[executeij〉. Claim 7.7(e) with M + •U and M ′ + •U ′ in the rôles of M and

M ′ yields (M ′ + •U ′)[j〉.
If moreover executegh ∈ U with g ≤#h <# j, then {g}+{i} ≤ U ′, so •{g}+•{i} ≤
M ′+•U ′ and (M ′ + •U ′)[{g}+{i}〉. In particular, g ⌣ i, and since N ′ is a
structural conflict net, •g ∩ •i = ∅. By Claim 7.7(e)—as above—(M ′+•U ′)[h〉,
so •g ∪ •h ∪ •j ∪ •i ≤ M ′+•U ′ ∈ [M ′0〉N ′ . Moreover, since g ≤# h <# j ≥# i, we
have •g ∩ •h 6= ∅, •h ∩ •i 6= ∅ and •i ∩ •j 6= ∅. Now in case also •h ∩ •i 6= ∅, the
transitions g, h and i constitute a fully reachable pure M; otherwise h ⌣ i and h,
j and i constitute a fully reachable pure M. Either way, we obtain a contradiction.
Consequently, MM ′,U(transhj -out) 6= −1 for all h <# j ∈ T ′.

(5b) Suppose M ′
a
−→; say M ′[i〉 with ℓ′(i) = a. Let j be the largest transition in T ′ w.r.t.

the well-ordering < on T such that i ≤# j and (M ′+•U ′)[j〉. It suffices to show that
MM ′,U [executeij〉, i.e. that MM ′,U (preij)=1, MM ′,U (transhj -out)=1 for all h <# j, and

MM ′,U (πj#l)=1 for all l >#j.
If executeij ∈ U we would have i ∈ U ′ and hence (M ′ +•U ′)[2 · {i}〉. Since N ′ is a
finitary structural conflict net, this is impossible. Therefore executeij 6∈ U and, using
the calculations from (a) above, MM ′,U(preij) = 1.

Let h <# j. To establish that MM ′,U (transhj -out) = 1 we need to show that there

is no k ≤# j with executekj ∈ U and no g ≤# h with executegh ∈ U . First suppose
executekj ∈ U for some k ≤# j. Then k ∈ U ′ and hence (M ′ +•U ′)[{i}+{k}〉. This
implies i ⌣ k, and, as N ′ is a structural conflict net, •i∩•k = ∅. Hence the transitions
i, j and k are all different, with •i∩ •j 6= ∅ and •j∩ •k 6= ∅ but •i∩ •k = ∅. Moreover,
the reachable marking M ′ + •U ′ enables all three of them. Hence N ′ contains a
fully reachable pure M, which contradicts the assumptions of Theorem 7.1.

50 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

Next suppose executegh ∈ U for some g ≤# h. Then (M +•U)[executegh〉, so (M ′ +
•U ′)[h〉 by Claim 7.7(e). Moreover, g ∈ U ′, so (M ′ +•U ′)[{i}+{g}〉. This implies
g ⌣ i, and •g ∩ •i = ∅. Moreover, •g ∩ •h 6= ∅, •h ∩ •j 6= ∅ and •j ∩ •i 6= ∅, while
the reachable marking M ′+•U ′ enables all these transitions. Depending on whether
•h ∩ •i = ∅, either h, j and i, or g, h and i constitute a fully reachable pure M,
contradicting the assumptions of Theorem 7.1.
Let l ># j. To establish that MM ′,U (πj#l) = 1 we need to show that there is no
k ≤# j with executekj ∈ U—already done above—and that ¬(M ′ +•U ′)[l〉. Suppose
(M ′ +•U ′)[l〉. Considering that j was the largest transition with i ≤# j and (M ′ +
•U ′)[j〉, we cannot have i <# l. Hence the transitions i, j and l are all different,
with •i ∩ •j 6= ∅ and •j ∩ •l 6= ∅ but •i ∩ •l = ∅. Moreover, the reachable marking
M ′ + •U ′ enables all three of them. Hence N ′ contains a fully reachable pure M,
which contradicts the assumptions of Theorem 7.1.

(5c) We have to show that H(t) ≤ HM ′,U(t) for each t ∈ T .
• In case t ∈ T− this follows from (7.18) and HM ′,U ∈ N

T+.
• In case t = executeij it follows since ℓ(H) ≡ ∅.
• In case t = distributep it follows from (7.14) and (7.18).
• Next let t = initialisec · fire for some c ∈ T ′. In case H(initialisec · fire) ≤ 0 surely we
have H(initialisec · fire) ≤ HM ′,U(initialisec · fire). So without limitation of generality
we may assume thatH(initialisec·fire) > 0. By (7.8, 7.18) we haveH(initialisec·fire) =
1. Using (7.13), Claim 7.8, (7.18) and (7.14) we obtain, for all p ∈ •c,

F ′(p, c) ·H(initialisec · fire) ≤ H(distributep) ≤ (M ′ +
•
U ′)(p).

Hence c is enabled under M ′ +•U ′, which implies HM ′,U (initialisec · fire) = 1.

• Let t=transferbc·fire for some b<#c∈T ′. As above, we may assumeH(transferbc·fire)>0.
By (7.15, 7.18) we haveH(transferbc·fire) = 1. Using (7.18) and thatH(executegb) = 0

for all g ≤# b, it follows that (M +•U)(πb#c) = 0. Hence ¬(M +•U)[executegb〉 for
all g ≤# b, and thus ∄executegb ∈ U . For all p ∈ •c we derive

F ′(p, c) ·H(transferbc · fire)
≤ F ′(p, c) ·

(

H(transferbc · fire)−H(transferbc · undone)
)

(7.18)
≤ F ′(p, c) ·

(

H(initialisec · fire)−H(initialisec · undo(transbc-in))
)

(7.9)
≤ F ′(p, c) ·

(

H(initialisec · fire)−H(initialisec · undone)
)

(7.6)

= [the same as above] +
∑

j≥#i∈p•

F ′(p, i) ·H(fetchp,ci,j) (Claim 7.8)

≤ H(distributep) (7.13)

≤ (M ′ +
•
U ′)(p) +

∑

{i∈T ′|p∈i•}

H(finalisei) (7.14)

≤ (M ′ +•U ′)(p) (7.18).

Hence (M ′ +•U ′)[c〉, and thus HM ′,U(transferbc) = 1.

(5d) If u /∈ T−, yet H(u) 6= 0, then u is either distributep, initialisej · fire or transferhj ·
fire for suitable p ∈ S′ or h, j ∈ T ′. For u = distributep the requirement follows
from Claim 7.7(c); otherwise Property (NF-2), together with (7.6), guarantees that
H(u) ≥ 0.

(5e) If H(t)>0 and H(u)<0, then t∈T+ and u∈T−. The only candidates for •t∩ •u 6= ∅
are
• pc ∈

•(initialisec · fire) ∩ •(fetchp,ci,j) for p ∈ S′, c, i ∈ p• and j ≥# i,
• transbc-in ∈

•
(transferbc · fire) ∩

•
(initialisec · undo(transbc-in)) for b ≤

c ∈ T ′.

ON CHARACTERISING DISTRIBUTABILITY 51

We investigate these possibilities one by one.
• H(initialisec · fire) > 0 ∧H(fetchp,ci,j) < 0 cannot occur by Claim 7.8.

• Suppose H(transferbc · fire) > 0. By (7.15, 7.18) we have H(transferbc · fire) = 1.
Through the derivation above, in the proof of requirement (c), using (7.18, 7.9, 7.6),
Claim 7.8 and (7.13), we obtain H(distributep) ≥ F ′(p, c) for all p ∈ •c. Now
Claim 7.7(d) yields H(finalisei) = 0 for all i

#
= c. By (7.4) and (7.18) we obtain

H(initialisec · reseti) = 0 for each such i. Hence
∑

i
#
=c

H(initialisec · reseti) = 0, and

thus H(initialisec · undo(transbc-in)) = 0 by (7.6, 7.18).
(5f) If H(u) < 0 and (M +•U)[t〉 with ℓ(t) 6= τ , then t = executeij for some i ≤# j ∈ T ′

and u ∈ T−. The only candidates for •t ∩ •u 6= ∅ are
• preij ∈

•
(executeij) ∩

•
(initialisej · undo(preij)) and

• transhj -out ∈
•
(executeij) ∩

•
(transferhj · undo(transhj -out)) for h <# j.

We investigate these possibilities one by one.
• Suppose (M + •U)[executeij〉. By Claim 7.7(b), H(finalisek) ≥ 0 for each k

#
= i.

By (7.4) and (7.18) we obtain H(initialisei · resetk) = 0 for each such k. Hence
∑

k
#
=i

H(initialisei · resetk) = 0, and thus H(initialisei ·undo(preij)) = 0 by (7.6, 7.18).

• Suppose (M +•U)[executeij〉 and h <# j. By Claim 7.7(b), H(finalisek) ≥ 0 for

each k
#
= j. By (7.4) and (7.18) H(transferhj · resetk) = 0 for each such k. So

∑

k
#
=j

H(transferhj · resetk)=0, and H(transferhj ·undo(transhj -out)) = 0 by (7.6, 7.18).

(5g) Suppose (M +•U)[{t}+{u}〉N , and i, k ∈ T ′ with ℓ′(i) = ℓ(t) and ℓ′(k) = ℓ(u). Since
the net N ′ is plain, t and u must have the form executeij and executekj for some j ># i

and l ># k. Claim 7.5 yields ¬(i
#
= k) and hence •i ∩ •k = ∅.

Thus, we have established that the conflict replicating implementation I(N ′) of a finitary
plain structural conflict net N ′ without a fully reachable pure M is branching ST-bisimilar
with explicit divergence to N ′. It remains to be shown that I(N ′) is essentially distributed.

Lemma 7.9. Let N be the conflict replicating implementation of a finitary net
N ′ = (S′, T ′, F ′,M ′0, ℓ

′); let j, l ∈ T ′, with l ># j. Then no two transitions from the set

{executeij | i ≤
j} ∪ {transferjl · fire} ∪ {transferjl · undo(transjl -out)} ∪ {executekl | k ≤

l}

can fire concurrently.

Proof. For each i≤#j pick an arbitrary preplace qi of i. The set

{fetchqi,ii,j -in, fetchqi,ii,j -out | i ≤# j} ∪ {πj#l, transjl -out, took(transjl -out, transferjl), ρ(transferjl }

is an S-invariant : there is always exactly one token in this set. This is the case because
there is exactly one token initially (on πj#l) and each transition from N has as many (with
multiplicities) preplaces as postplaces in this set. The transitions from

{executeij | i ≤
j} ∪ {transferjl · fire} ∪ {transferjl · undo(transjl -out)} ∪ {executekl | k ≤

l}

each have a preplace in this set. Hence no two of them can fire concurrently.

Lemma 7.10. Let N be the conflict replicating implementation I(N ′) of a finitary plain
structural conflict net N ′ = (S′, T ′, F ′,M ′0, ℓ

′) without a fully reachable pure M. Then for
any i ≤# j

#
= c ∈ T ′ and f ∈ (initialisec)

far , the transitions executeij and initialisec · undo(f)
cannot fire concurrently.

52 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

Proof. Suppose these transitions can fire concurrently, say from the marking M ∈ [M0〉N .
By Claim 7.4, there are M ′ ∈ [M ′0〉N ′ and G ∈F Z

T such that (B)–(N) hold. Let t :=
initialisec, G1 := G + {t · undo(f)} and M1 :=M + Jt·undo(f)K. Then (7.6), applied to the
triples (M,M ′, G) and (M1,M

′, G1), yields
∑

{ω|t∈Ωω}

G(t · resetω) ≤ G(t · undo(f)) < G1(t · undo(f)) ≤
∑

{ω|t∈Ωω}

G1(t · undoω) =
∑

{ω|t∈Ωω}

G(t · undoω).

Hence, there is an ω with t ∈ Ωω and G(t · resetω) < G(t · undoω). This ω must have the
form k ∈ T ′ with k

#
= c. We now obtain

0 = G(finalisek) (by (C))
≤ G(t · elidek) +G(t · resetk) (by (7.4))
< G(t · elidek) +G(t · undok)
≤

∑

l≥#k G(executekl) (by (7.3)).

Hence, there is an l ≥# k
#
=c with G(executekl) > 0. By (M) we obtain ¬(j

#
=k), so •j∩•k = ∅.

Additionally, we have •j ∩ •c 6= ∅ and •c∩ •k 6= ∅. By (N) we obtain M ′[j〉, and by (D) and
(F) M ′[k〉. Furthermore, by (7.6), G(t ·undo(f)) < G1(t ·undo(f)) ≤ G1(t · fire) = G(t · fire),
so, for all p ∈ •c,

F ′(p, c) ≤ F ′(p, c) ·
(

G(t · fire)−G(t · undo(f))
)

≤ F ′(p, c) ·
(

G(t · fire)−G(t · undone)
)

(by (7.6))
≤ G(distributep)−

∑

j≥#i∈p• F
′(p, i) ·G(fetchp,ci,j) (by (7.13))

≤ G(distributep) (by (E) and (7.7))
≤ M ′(p) (by (D).

It follows that M ′[c〉. Thus N ′ contains a fully reachable pure M, which contradicts the
assumptions of Lemma 7.10.

Theorem 7.11. Let N be the conflict replicating implementation I(N ′) of a finitary plain
structural conflict net N ′ without a fully reachable pure M. Then N is essentially distributed.

Proof. We take the canonical distribution D of N , in which ≡D is the equivalence relation
on places and transitions generated by Condition (1) of Definition 4.5. We need to show
that this distribution satisfies Condition (2′) of Definition 4.8. A given transition t with
ℓ(t) 6= τ must have the form executeij for some i ≤# j ∈ T ′. By following the flow relation of
N one finds the places and transitions that, under the canonical distribution, are co-located
with executeij:

πj#l → transferjl · fire← transjl -in→ initialisel · undo(transjl -in)← take(transjl -in, initialisel)
↓

executeij
↑

transhj -out→ transferhj · undo(transhj -out)← take(transhj -out, transferhj)
↓

executegj
↑

pregj → initialiseg · undo(pregj)← take(pregj , initialiseg)

for all l># j, h<# j and g ≤# j. We need to show that none of these transitions can happen

concurrently with executeij . For transitions transferjl · fire and executegj this follows directly

ON CHARACTERISING DISTRIBUTABILITY 53

from Lemma 7.9. For transferhj · undo(transhj -out) this also follows from Lemma 7.9, in which
j, k and l play the rôle of the current h, i and j. For the transitions initialisel · undo(transjl -in)
and initialiseg · undo(pregj) this has been established in Lemma 7.10.

Our main result follows by combining Theorems 7.1, 7.11 and 4.15:

Theorem 7.12. Let N be a finitary plain structural conflict net without a fully reachable
pure M. Then N is distributable up to ≈∆

bSTb.

Corollary 7.13. Let N be a finitary plain structural conflict net. Then N is distributable
iff it has no fully reachable pure M.

8. Conclusion

In this paper, we have given a precise characterisation of distributable Petri nets in terms of
a semi-structural property. Moreover, we have shown that our notion of distributability cor-
responds to an intuitive notion of a distributed system by establishing that any distributable
net may be implemented as a network of asynchronously communicating components.

In order to formalise what qualifies as a valid implementation, we needed a suitable
equivalence relation. We have chosen step failures equivalence for showing the impossibility
part of our characterisation, since it is one of the simplest and least discriminating semantic
equivalences imaginable that abstracts from internal actions but preserves branching time,
concurrency and divergence to some small degree. For the positive part, stating that all
other nets are implementable, we have introduced a combination of several well known rather
discriminating equivalences, namely a divergence sensitive version of branching bisimulation
adapted to ST-semantics. Hence our characterisation is rather robust against the chosen
equivalence; it holds in fact for all equivalences between these two notions. However, ST-
equivalence (and our version of it) preserves the causal structure between action occurrences
only as far as it can be expressed in terms of the possibility of durational actions to overlap in
time. Hence a natural question is whether we could have chosen an even stronger causality
sensitive equivalence for our implementability result, respecting e.g. pomset equivalence
or history preserving bisimulation. Our conflict replicating implementation does not fully
preserve the causal behaviour of nets; we are convinced that we have chosen the strongest
possible equivalence for which our implementation works. It is an open problem to find a
class of nets that can be implemented distributedly while preserving divergence, branching
time and causality in full. Another line of research is to investigate which Petri nets can be
implemented as distributed nets when relaxing the requirement of preserving the branching
structure. We conjecture that there exists a notion of equivalence that captures some
branching time aspects, but not as strongly as step failures equivalence, under which all
Petri nets become distributable. However, also in this case it is problematic, in fact even
impossible in our setting, to preserve the causal structure, as has been shown in [SPG11].
A similar impossibility result has been obtained in the world of the π-calculus in [PSN11].

In this paper we have sought a characterisation of distributability only for plain nets, in
which all transitions have a different label and none are internal. Naturally, any distributed
implementation that applies to plain nets having a semi-structural property—in particular
the one contributed here—also applies to non-plain nets having the same semi-structural
property. Namely to implement a non-plain net N , note that N can be written as ρ(N ′),
where N ′ is a plain net and ρ a relabelling function. A correct implementation of N is

54 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

now obtained as ρ(I(N ′)), where I(N ′) is the distributed implementation of N ′. Yet, it
appears unlikely that there is a semi-structural characterisation that captures all non-plain
distributable nets: for any non-trivial semi-structural property there probably are nets that
do not have that property, but are semantically equivalent to nets that do. This may
happen for instance when some essential transitions that violate the property are labelled
τ and can be abstracted away. Thus, we do not expect that a natural characterisation of
distributability for non-plain nets exists—where “natural” excludes characterisations that
just say, in other words, “being equivalent to a distributed net”.

Our work shows that the main problem in creating distributed implementations of
systems arises from the interplay between choice and synchronous communication. This
issue has already been investigated in the context of distributed algorithms. Rabin and
Lehmann observed in [RL94] that there is no fully symmetric distributed solution to the
dining philosophers problem. In [Bou88] Luc Bougé considers the problem of implementing
symmetric leader election in the sublanguages of CSP obtained by allowing different forms of
communication, combining input and output guards in guarded choice in different ways. He
finds that the possibility of implementing leader election depends heavily on the structure
of the communication graphs. Truly symmetric schemes are only possible in CSP with
arbitrary input and output guards in choices.

Synchronous interaction is a basic concept in many languages for system specification
and design, e.g. in statechart-based approaches and in process calculi. For process calculi,
language hierarchies have been established which exhibit the expressive power of different
forms of synchronous and asynchronous interaction. In [BP91] Frank de Boer and Catuscia
Palamidessi consider various dialects of CSP with differing degrees of asynchrony. Similar
work is done for the π-calculus in [Pal97] by Catuscia Palamidessi, in [Nes00] by Uwe
Nestmann and in [Gor06] by Daniele Gorla. A rich hierarchy of asynchronous π-calculi has
been mapped out in these papers. Similar to the findings of Bougé, mixed-choice, i.e. the
ability to combine input and output guards in a single choice, plays a central rôle in the
implementation of synchronous behaviour.

In [Sel97], Peter Selinger considers labelled transition systems whose visible actions
are partitioned into input and output actions. He defines asynchronous implementations
of such a system by composing it with in- and output queues, and then characterises the
systems that are behaviourally equivalent to their asynchronous implementations. The
main difference with our approach is that we focus on asynchrony within a system, whereas
Selinger focuses on the asynchronous nature of the communications of a system with the
outside world.

Dirk Taubner has in [Tau88] given various protocols by which to implement arbitrary
Petri nets in the OCCAM programming language. Although this programming language
offers synchronous communication he makes no substantial use of that feature in the proto-
cols, thereby effectively providing an asynchronous implementation of Petri nets. He does
not indicate a specific equivalence relation, but is effectively using linear-time equivalences
to compare implementations to the specification.

Also in hardware design it is an intriguing quest to use interaction mechanisms which do
not rely on a global clock, in order to gain performance. Here the simulation of synchrony
by asynchrony can be a crucial issue, see for instance [Lam78] and [Lam03].

The idea of modelling asynchronously communicating sequential components by se-
quential Petri nets interacting though buffer places has already been considered in [Re82].
There Wolfgang Reisig introduces a class of systems, represented as Petri nets, where the

ON CHARACTERISING DISTRIBUTABILITY 55

a b c

⇒

a b c

Figure 13: A specification and its Hopkins-implementation which added concurrency.

a b c

⇒

a b c

Figure 14: A distributable net which is not considered distributable in [Ho91], and its im-
plementation.

relative speeds of different components are guaranteed to be irrelevant. His class is a strict
subset of our LSGA nets, requiring additionally, amongst others, that all choices in se-
quential components are free, i.e. do not depend upon the existence of buffer tokens, and
that places are output buffers of only one component. Another quite similar approach was
taken in [EHH10], where transition labels are classified as being either input or output.
There, asynchrony is introduced by adding new buffer places during net composition. This
framework does not allow multiple senders for a single receiver.

Other notions of distributed and distributable Petri nets are proposed in [Ho91, BCD02,
BD12]. In these works, given a distribution of the transitions of a net, the net is dis-
tributable iff it can be implemented by a net that is distributed w.r.t. that distribution.
The requirement that concurrent transitions may not be co-located is absent; given the
fixed distribution, there is no need for such a requirement. These papers differ from each
other, and from ours, in what counts as a valid implementation. Hopkins [Ho91] uses an
interleaving equivalence to compare an implementation to the original net, and while al-
lowing a range of implementations, he does require them to inherit some of the structure of
the original net. The net classes he describes in his paper are incomparable with our class
of distributable nets. One direction of this inequality depends on his choice of interleaving
semantics, which allows the implementation in Figure 13. The step failures equivalence we
use does not tolerate the added concurrency and the depicted net is not distributable in our
sense. The other direction of the inequality stems from the fact that we allow implemen-
tations which do not share structure with the specification but only emulate its behaviour.
That way, the net in Figure 14 can be implemented in our approach as depicted.

A more abstract approach to the same underlying problem of correctly executing an
arbitrary Petri net as a distributed system has been taken in [KP13]. The authors provide
a modified net semantics and an algorithm to split the net into agents which can locally
decide most choices and resort to a global scheduler in case multiple agents must be coor-
dinated. While such an approach looses branching time equivalence between a net and its
implementation, it provides a clear separation of concerns between executing the net and
solving the distributed coordination problems.

56 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

In [GGS08] we have obtained a characterisation similar to Corollary 7.13, but for a much
more restricted notion of distributed implementation (plain distributability), disallowing
nontrivial transition labellings in distributed implementations. We also proved that fully
reachable pure Ms are not implementable in a distributed way, even when using transition
labels (Theorem 5.6). However, we were not able to show that this upper bound on the class
of distributable systems was tight. Our current work implies the validity of Conjecture 1
of [GGS08]. While in [GGS08] we considered only one-safe place/transition systems, the
present paper employs a more general class of place/transition systems, namely structural
conflict nets. This enables us to give a concrete characterisation of distributed nets as
systems of sequential components interacting via non-safe buffer places.

On the level of applications, we expect our results to be useful for language design.
We would like to make a thorough comparison of our results to those on communication
patterns in process algebras, versions of the π-calculus and I/O-automata [Lyn96]. Using a
Petri net semantics of a suitable system description language, we could compare our class of
distributed nets to the class of nets expressible in the language, especially when restricting
the allowed communication patterns in the ways considered in [BP91, Bou88] or in [Lyn96].
A first step in that direction is [PNG13].

Acknowledgment. The authors gratefully thank the referees of this paper for their very
thorough examination and helpful suggestions.

References

[BCD02] E. Badouel, B. Caillaud & P. Darondeau (2002): Distributing Finite Automata Through Petri Net
Synthesis. Formal Aspects of Computing 13(6), pp. 447–470, doi:10.1007/s001650200022.

[BKO87] J.A. Bergstra, J.W. Klop & E.-R. Olderog (1987): Failures without chaos: a new process semantics
for fair abstraction. In M. Wirsing, editor: Formal Description of Programming Concepts – III,
Proceedings of the 3th IFIP WG 2.2 working conference, Ebberup 1986, Amsterdam, pp. 77–103.

[BD12] E. Best & Ph. Darondeau (2012): Petri Net Distributability. In E.M. Clarke, I. Virbitskaite &
A. Voronkov, editors: Perspectives of Systems Informatics - Revised Selected Papers presented
at the 8th International Andrei Ershov Memorial Conference, PSI 2011, Novosibirsk, LNCS 7162,
Springer, pp. 1–18, doi:10.1007/978-3-642-29709-0_1.

[BP91] F.S. de Boer & C. Palamidessi (1991): Embedding as a Tool for Language Comparison: On the
CSP Hierarchy. In J.C.M. Baeten & J.F. Groote, editors: Proc. 2nd International Conference
on Concurrency Theory (CONCUR’91), Amsterdam, The Netherlands, LNCS 527, Springer, pp.
127–141, doi:10.1007/3-540-54430-5_85.

[Bou88] L. Bougé (1988): On the existence of symmetric algorithms to find leaders in networks of commu-
nicating sequential processes. Acta Inf. 25(2), pp. 179–201, doi:10.1007/BF00263584.

[BHR84] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential pro-
cesses. Journal of the ACM 31(3), pp. 560–599, doi:10.1145/828.833.

[EHH10] D. El Hog-Benzina, S. Haddad & R. Hennicker (2010): Process Refinement and Asynchronous Com-
position with Modalities. In N. Sidorova & A. Serebrenik, editors: Proceedings of the 2nd Intern.
Workshop on Abstractions for Petri Nets and Other Models of Concurrency (APNOC’10), Braga,
Portugal. Available at http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf.

[vG93] R.J. van Glabbeek (1993): The Linear Time - Branching Time Spectrum II. In: Proceedings of
the 4th International Conference on Concurrency Theory (CONCUR’93), Springer, London, UK,
pp. 66–81, doi:10.1007/3-540-57208-2_6.

[GG01] R.J. van Glabbeek & U. Goltz (2001): Refinement of actions and equivalence notions for concurrent
systems. Acta Informatica 37(4/5), pp. 229–327, doi:10.1007/s002360000041.

http://dx.doi.org/10.1007/s001650200022
http://dx.doi.org/10.1007/978-3-642-29709-0_1
http://dx.doi.org/10.1007/3-540-54430-5_85
http://dx.doi.org/10.1007/BF00263584
http://dx.doi.org/10.1145/828.833
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/EHH-apnoc10.pdf
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/s002360000041

ON CHARACTERISING DISTRIBUTABILITY 57

[GGS08] R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2008): On Synchronous and Asynchronous Interac-
tion in Distributed Systems. In E. Ochmański & J. Tyszkiewicz, editors: Mathematical Foundations
of Computer Science 2008, LNCS 5162, Springer, pp. 16–35, doi:10.1007/978-3-540-85238-4_2.
Full version: Technical Report 2008-03, TU-Braunschweig; http://arxiv.org/abs/0901.0048.

[GGS11] R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2011): Abstract Processes of Place/Transition
Systems. Information Processing Letters 111(13), pp. 626 – 633, doi:10.1016/j.ipl.2011.03.013.

[GGS12] R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann (2012): On Distributability of Petri Nets.
Informatik Bericht Nr. 2011-10, Institut für Programmierung und Reaktive Systeme, TU Braun-
schweig, Germany. Available at http://arxiv.org/abs/1207.3597. Ext. abstract in L. Birkedal,
ed.: Proc. 15th Int. Conf. on Foundations of Software Science and Computational Structures,
FoSSaCS’12, LNCS 7213, Springer, 2012, pp. 331-345, doi:10.1007/978-3-642-28729-9_22,.

[GLT09] R.J. van Glabbeek, B. Luttik & N. Trčka (2009): Branching Bisimilarity with Explicit Divergence.
Fundamenta Informaticae 93(4), pp. 371–392. Archived at http://arxiv.org/abs/0812.3068.

[GV87] R.J. van Glabbeek & F.W. Vaandrager (1987): Petri net models for algebraic theories of concur-
rency (extended abstract). In: Proceedings PARLE ’87, LNCS 259, Springer, pp. 224–242, doi:10.
1007/3-540-17945-3_13. Available at http://kilby.stanford.edu/~rvg/pub/petri.pdf.

[GW89] R.J. van Glabbeek & W.P. Weijland (1989): Branching Time and Abstraction in Bisimulation
Semantics (extended abstract). In G.X. Ritter, editor: Information Processing 89, Proceedings of
the IFIP 11th World Computer Congress, San Francisco 1989, North-Holland, pp. 613–618. Full
version appeared as [GW89].

[GW96] R.J. van Glabbeek & W.P. Weijland (1996): Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3), pp. 555–600, doi:10.1145/233551.233556.

[Gor06] D. Gorla (2006): On the Relative Expressive Power of Asynchronous Communication Primitives.
In L. Aceto & A. Ingólfsdóttir, eds.: Proc. 9th Int. Conf. on Foundations of Software Sc. and
Comput. Structures (FoSSaCS’06), LNCS 3921, Springer, pp. 47–62, doi:10.1007/11690634_4.

[Ho91] R.P. Hopkins (1991): Distributable nets. In: Advances in Petri Nets 1991, LNCS 524, Springer,
pp. 161–187, doi:10.1007/BFb0019974.

[KP13] J.-P. Katoen & D. Peled (2013): Taming Confusion for Modeling and Implementing Probabilistic
Concurrent Systems. In M. Felleisen & P. Gardner, editors: Programming Languages and Systems
- Proceedings 22nd European Symposium on Programming, ESOP 2013, Rome, Italy, March 2013,
LNCS 7792, Springer, pp. 411-430, doi:10.1007/978-3-642-37036-6_23.

[Lam78] L. Lamport (1978): Time, Clocks, and the Ordering of Events in a Distributed System. Commun.
ACM 21(7), pp. 558–565, doi:10.1145/359545.359563.

[Lam03] L. Lamport (2003): Arbitration-free synchronization. Distrib. Comput. 16(2-3), pp. 219–237,
doi:10.1007/s00446-002-0076-2.

[Lyn96] N.A. Lynch (1996): Distributed Algorithms. Morgan Kaufmann Publishers.
[Mi89] R. Milner (1989): Communication and Concurrency. Prentice Hall, Englewood Cliffs.
[Nes00] U. Nestmann (2000): What Is a ‘Good’ Encoding of Guarded Choice? Information and Computa-

tion 156, pp. 287–319, doi:10.1006/inco.1999.2822.
[Pal97] C. Palamidessi (1997): Comparing the Expressive Power of the Synchronous and the Asynchro-

nous pi-calculus. In: Conf. Record of the 24th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages (POPL’97), ACM Press, pp. 256–265, doi:10.1145/263699.263731.

[PNG13] K. Peters, U. Nestmann & U. Goltz (2013): On Distributability in Process Calculi. In M. Felleisen
& Ph. Gardner, editors: Programming Languages and Systems - Proceedings 22nd European
Symposium on Programming, ESOP 2013, Rome, Italy, March 2013, LNCS 7792, Springer, pp.
310–329, doi:10.1007/978-3-642-37036-6_18.

[PSN11] K. Peters, J.-W. Schicke & U. Nestmann (2011): Synchrony vs Causality in the Asynchronous
Pi-Calculus. In B. Luttik & F. Valencia, editors: Proceedings 18th International Workshop on
Expressiveness in Concurrency, Aachen, Germany, 5th September 2011, Electronic Proceedings in
Theoretical Computer Science 64, pp. 89–103, doi:10.4204/EPTCS.64.7.

[RL94] M.O. Rabin & D.J. Lehmann (1994): On the Advantages of Free Choice: A Symmetric and Fully
Distributed Solution to the Dining Philosophers Problem. In A.W. Roscoe, editor: A Classical Mind:
Essays in Honour of C.A.R. Hoare, chapter 20, Prentice Hall, pp. 333–352. Extended abstract in:
Proceedings of POPL’81, pages 133–138, doi:10.1145/567532.567547

http://dx.doi.org/10.1007/978-3-540-85238-4_2
http://arxiv.org/abs/0901.0048
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://arxiv.org/abs/1207.3597
http://dx.doi.org/10.1007/978-3-642-28729-9_22
http://arxiv.org/abs/0812.3068
http://dx.doi.org/10.1007/3-540-17945-3_13
http://dx.doi.org/10.1007/3-540-17945-3_13
http://kilby.stanford.edu/~rvg/pub/petri.pdf
http://dx.doi.org/10.1145/233551.233556
http://dx.doi.org/10.1007/11690634_4
http://dx.doi.org/10.1007/BFb0019974
http://dx.doi.org/10.1007/978-3-642-37036-6_23
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1007/s00446-002-0076-2
http://dx.doi.org/10.1006/inco.1999.2822
http://dx.doi.org/10.1145/263699.263731
http://dx.doi.org/10.1007/978-3-642-37036-6_18
http://dx.doi.org/10.4204/EPTCS.64.7
http://dx.doi.org/10.1145/567532.567547

58 R. VAN GLABBEEK, U. GOLTZ, AND J.-W. SCHICKE-UFFMANN

[Re82] W. Reisig (1982): Deterministic Buffer Synchronization of Sequential Processes. Acta Informatica
18, pp. 115–134, doi:10.1007/BF00264434.

[Ro98] A.W. Roscoe (1998): The Theory and Practice of Concurrency. Prentice Hall. Available at http://
web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/68b.pdf.

[SPG11] J.-W. Schicke, K. Peters & U. Goltz (2011): Synchrony vs. Causality in Asynchronous Petri Nets.
In B. Luttik & F. Valencia, editors: Proceedings 18th International Workshop on Expressiveness
in Concurrency, Aachen, Germany, 5th September 2011, Electronic Proceedings in Theoretical
Computer Science 64, pp. 119–131, doi:10.4204/EPTCS.64.9.

[Sel97] P. Selinger (1997): First-Order Axioms for Asynchrony. In: Proc. 8th International Conference on
Concurrency Theory (CONCUR’97), Warsaw, Poland, LNCS 1243, Springer, pp. 376–390, doi:10.
1007/3-540-63141-0_26.

[Tau88] D. Taubner (1988): Zur verteilten Implementierung von Petrinetzen. Informationstechnik 30(5),
pp. 357–370. Technical report, TUM-I 8805, TU München.

[TV89] D. Taubner & W. Vogler (1989): Step Failures Semantics and a Complete Proof System. Acta
Informatica 27(2), pp. 125–156, doi:10.1007/BF00265151.

[Vo93] W. Vogler (1993): Bisimulation and Action Refinement. Theoretical Computer Science 114(1), pp.
173–200, doi:10.1016/0304-3975(93)90157-O.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

http://dx.doi.org/10.1007/BF00264434
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/68b.pdf
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/68b.pdf
http://dx.doi.org/10.4204/EPTCS.64.9
http://dx.doi.org/10.1007/3-540-63141-0_26
http://dx.doi.org/10.1007/3-540-63141-0_26
http://dx.doi.org/10.1007/BF00265151
http://dx.doi.org/10.1016/0304-3975(93)90157-O

	1. Introduction
	2. Basic Notions
	3. Semantic Equivalences
	4. Distributed Systems
	4.1. LSGA nets
	4.2. Distributed nets
	4.3. Correspondence between LSGA nets and distributed nets

	5. Distributable Systems
	5.1. Characterising Distributability
	5.2. A compressed Petri net notation
	5.3. Petri nets with reversible transitions
	5.4. The conflict replicating implementation

	6. Proving Implementations Correct
	Digression: Interleaving semantics

	7. The Correctness Proof
	8. Conclusion
	Acknowledgment

	References

